圓柱型雙材料界面裂紋問(wèn)題研究
[Abstract]:With the rapid development of modern science and technology, cylindrical bimaterial structures composed of different materials are more and more widely used in many high-tech fields. The interaction between the layers is transmitted at the bonding site, and stress concentration often occurs at the interface end under a certain external load. When the stress concentration is too high, the engineering properties of the material structure will drop sharply and even break out suddenly. Therefore, it is of great theoretical and engineering significance to study the interfacial crack problem of cylindrical bimaterial. In this paper, by means of the method of separating variables and the method of undetermined coefficients, The plane interface crack problem of cylindrical isotropic bimaterials under radial loading and the anti-plane interface crack problem of cylindrical functionally graded materials subjected to axial shear force are studied respectively. The problem of interfacial crack in cylindrical isotropic bimaterials is studied by constructing displacement function and stress function respectively. Firstly, the interface crack problem is transformed into a boundary value problem of partial differential equations. By using the method of variable separation, the set displacement function or stress function table with undetermined coefficients is obtained in the form of infinite series. By using the undetermined coefficient method and the boundary conditions, the equations are set up, and the undetermined coefficients are obtained. The solution of the boundary value problem of partial differential equations is obtained, and the relationship between the displacement function or the stress function and the stress and displacement is obtained. The formal expressions of stresses and displacements near the tip of interfacial cracks of cylindrical isotropic bimaterials with series form under radial stress are obtained. For the cylindrical functionally gradient interface crack problem, the mechanical problem is transformed into the boundary value problem of partial differential equation. The shear modulus continuously varying along the polar diameter is introduced, and the separation variable method and the undetermined coefficient method are used. The boundary value problem of partial differential equation is transformed into algebraic problem. By using boundary conditions and continuity conditions, the singular integral equations are derived and the solutions satisfying the system of partial differential equations are obtained. The stress field, displacement field and stress intensity factor near the interface crack tip of cylindrical functionally graded materials with series form under axial shear force are calculated by using displacement function, stress and displacement relations.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O346.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡海濤;平面各向異性彈性介質(zhì)的周期裂紋問(wèn)題[J];數(shù)學(xué)物理學(xué)報(bào);1982年01期
2 苗天德;非局部彈性場(chǎng)的邊緣裂紋問(wèn)題[J];蘭州大學(xué)學(xué)報(bào);1983年S2期
3 陳宜周;;無(wú)限平板中的多裂紋問(wèn)題[J];西北工業(yè)大學(xué)學(xué)報(bào);1984年04期
4 陳宜周;旋轉(zhuǎn)圓盤中的多裂紋問(wèn)題[J];力學(xué)學(xué)報(bào);1985年06期
5 蔡海濤;運(yùn)動(dòng)裂紋問(wèn)題[J];數(shù)學(xué)物理學(xué)報(bào);1985年04期
6 陳宜周;無(wú)限平板中的周期裂紋問(wèn)題的數(shù)值解法[J];應(yīng)用力學(xué)學(xué)報(bào);1985年01期
7 申大維;曾蕓蕓;;一種求解圓弧裂紋問(wèn)題的新方法[J];北京理工大學(xué)學(xué)報(bào);2006年08期
8 陳宜周;;多裂紋問(wèn)題積分方程方法及相關(guān)問(wèn)題[J];力學(xué)進(jìn)展;2008年03期
9 沈永祥;復(fù)合材料拼接平面的周期裂紋問(wèn)題[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);1990年01期
10 湯任基;兩非均勻半平面粘結(jié)的非均勻平面的裂紋問(wèn)題[J];應(yīng)用數(shù)學(xué)和力學(xué);1991年02期
相關(guān)會(huì)議論文 前8條
1 張慧華;;基于蜂窩數(shù)值流形方法的平面裂紋問(wèn)題求解[A];第16屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議會(huì)議程序冊(cè)[C];2012年
2 解放;董春迎;;三維夾雜裂紋問(wèn)題中的一個(gè)積分公式[A];北京力學(xué)學(xué)會(huì)第12屆學(xué)術(shù)年會(huì)論文摘要集[C];2006年
3 彭凡;馬慶鎮(zhèn);;黏彈性梯度材料的Ⅰ型與Ⅱ型復(fù)合裂紋問(wèn)題[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
4 程站起;;兩不同梯度材料間運(yùn)動(dòng)裂紋問(wèn)題研究[A];第16屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議會(huì)議程序冊(cè)[C];2012年
5 時(shí)朋朋;李星;;層合板反平面周期裂紋和層合柱循環(huán)對(duì)稱裂紋模型[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
6 王曉麗;吳林志;果立成;;垂直于功能梯度條邊界的共線平面裂紋問(wèn)題分析[A];第十五屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
7 周明玨;岑松;傅向榮;;雜交應(yīng)力函數(shù)單元在裂紋問(wèn)題中的運(yùn)用[A];北京力學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2011年
8 左宏;;亞表面壓剪裂紋問(wèn)題及其研究進(jìn)展[A];首屆全國(guó)航空航天領(lǐng)域中的力學(xué)問(wèn)題學(xué)術(shù)研討會(huì)論文集(下冊(cè))[C];2004年
相關(guān)博士學(xué)位論文 前4條
1 劉寶良;線彈性體缺陷—裂紋問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2010年
2 劉寶良;線彈性體缺陷-裂紋問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2010年
3 王永健;壓電彈性體孔邊裂紋問(wèn)題研究[D];南京航空航天大學(xué);2012年
4 張明;彈塑性雙材料界面裂紋問(wèn)題的邊界元法[D];清華大學(xué);1995年
相關(guān)碩士學(xué)位論文 前10條
1 許艷;特征距離和擴(kuò)充無(wú)網(wǎng)格法求解多裂紋問(wèn)題[D];寧夏大學(xué);2015年
2 王亞偉;二維六方準(zhǔn)晶無(wú)限體中的一些裂紋問(wèn)題[D];西南交通大學(xué);2016年
3 歐陽(yáng)成;一維六方準(zhǔn)晶雙材料中運(yùn)動(dòng)裂紋問(wèn)題的研究[D];湖南大學(xué);2016年
4 王艷麗;層間裂紋問(wèn)題的無(wú)網(wǎng)格求解方法研究[D];中國(guó)民航大學(xué);2014年
5 王慧;圓柱型雙材料界面裂紋問(wèn)題研究[D];太原科技大學(xué);2017年
6 李福林;反平面彈性中半平面多邊緣裂紋問(wèn)題的奇異積分方程解法[D];江蘇大學(xué);2006年
7 吳兵;正交各向異性熱彈性體中幾個(gè)裂紋問(wèn)題的精確解[D];廣西大學(xué);2013年
8 曾云;壓電陶瓷反平面裂紋問(wèn)題中的電場(chǎng)梯度效應(yīng)[D];華中科技大學(xué);2005年
9 徐軼洋;雙相材料平面中光滑曲線裂紋問(wèn)題的超奇異積分方程方法[D];鄭州大學(xué);2011年
10 孔國(guó)芳;含拼接線的斜折線鈍化裂紋問(wèn)題[D];大連海事大學(xué);2012年
,本文編號(hào):2271864
本文鏈接:http://www.sikaile.net/shoufeilunwen/benkebiyelunwen/2271864.html