基于衛(wèi)星和再分析數(shù)據(jù)的大氣水循環(huán)變量比較和分析
[Abstract]:Water cycle refers to the cyclic movement of water in the geo-atmospheric system by means of evaporation, precipitation and runoff under the action of solar radiation and gravity. The atmospheric physical quantities involved include water vapor in the atmosphere, water condensate in clouds and precipitation. Water cycle is constrained by both the climate system and, in turn, by affecting atmospheric circulation. The water cycle variables involved in this paper mainly include two categories, i.e. water condensate and water vapor. Several kinds of water condensate data, including ISCCP, MODIS and Cloud Sat, and reanalysis data CFSR and ERA, were used to compare the horizontal and vertical distribution characteristics of climatic state and seasonal variation of water condensate in China and its surrounding areas, and to evaluate the uncertainty of water condensate between different data. In the latter case, we mainly use the Microwave Imager (TMI) carried by TRMM to study the diurnal variation characteristics of water vapor over the tropical ocean. The results show that MODIS, ERA and CFSR data show high consistency in describing the whole China and the whole week. The absolute value and amplitude of variation of MODIS data are the largest, CFSR on land is not much different from other data, and ERA is relatively small. In contrast, although ISCCP can also capture the horizontal distribution of the total amount of water condensate. There are some main features of regional monthly variations, but there are some differences in some specific details and spatial and temporal correlations with the other three types of data, and the absolute values and amplitudes of variations are minimal. Especially, the liquid water content of ERA is higher than that of CFSR. The above differences lead to more than 60% uncertainty of LWP in climate sensitive areas such as the low latitude ocean surface and the southern side of the Qinghai-Tibet Plateau, which needs to be paid enough attention. In addition to Yunnan-Guichuan area, the "uncertainty" of other areas is large, in which MODIS data is the highest, followed by CFSR. ERA ice water content accounts for the lowest proportion of total condensate, and its absolute value is also the lowest. It is found that the cloud-water path in summer is higher than that in winter in most parts of China. The seasonal variation of water condensate in China and its surrounding areas is remarkable. Different data are similar in reflecting the seasonal distribution of cloud-aquatic products, but the observed data ISCCP, MODIS, reanalysis data CFSR, ERA are significantly different in the high value centers of IWP. The distribution is affected by topography, atmospheric circulation, water vapor transport and other factors. The liquid water content in southern China is obviously higher than that in northern China for the vertical distribution of water condensate. Regarding the vertical distribution of ice water content, the ice layers of CFSR and ERA are deeper than that of CPR, and the values of model data are also different from those of observation data, indicating that the model may overestimate the thermodynamic process of cloud in China. The ice cloud parameterization scheme of the model is still larger than that of observation. All in all, the observed data ISCCP, MODIS, CPR and reanalysis data ERA, CFSR are basically similar in reflecting the condensate in China and its surrounding areas, but because of the different satellite instruments and the different parameterization schemes used in different models, the values of the condensate reflected by different data are also quite different. Again, it is emphasized that there are possible sources of errors (some of which are even insurmountable) for different water condensate data, such as the inability to obtain cloud-water information under ice clouds based on observations from spaceborne passive spectral sensors, the criteria for cloud-water and ice-water partitioning based on cloud radar are questionable, and the parameterization of different models is questionable. Therefore, the purpose of this paper is not to determine which data is better for the condensate results, but only to point out the possible differences between the different data, so as to understand the degree of uncertainty in the analysis of the corresponding data, so as to better estimate the radiation of the cloud. On the other hand, studies of water vapor, another important variable in the water cycle, show that the water vapor distribution over the tropical ocean is decreasing from the equator to the poles, with water vapor mainly concentrated in the Bay of Bengal, the Indian Ocean, and Indonesia. Nearby waters, warm pools in the Pacific Ocean and equatorial convergence zones. Water vapor values are low along the Peruvian coast, the western coast of the United States and other water vapor subsidence zones. The diurnal variation of water vapor in some regions is generally of good periodicity, mainly 24 hours or 12 hours. The diurnal variation characteristics of water vapor in several typical regions on the ocean surface are analyzed by using the inverted water vapor data. The results show that the water vapor on the ocean surface generally has good periodicity, and the diurnal variation of water vapor in most regions is all. In addition, diurnal variations of water vapor in these regions may be affected by sea temperature, wind speed, and solar short-wave radiation.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P339
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;上海出現(xiàn)新型環(huán)保水循環(huán)公廁[J];發(fā)明與創(chuàng)新;2004年02期
2 丑紀(jì)范;水循環(huán)基礎(chǔ)研究的觀念、方法、問(wèn)題和可開(kāi)展的工作[J];科技導(dǎo)報(bào);2003年01期
3 壯歌德;王卓妮;;全球和地區(qū)水循環(huán)及科學(xué)發(fā)展[J];世界環(huán)境;2011年02期
4 熊永蘭;;土地利用變化影響陸地水循環(huán)[J];地球科學(xué)進(jìn)展;2011年07期
5 高維真;;水污染與水質(zhì)測(cè)報(bào)技術(shù)講座——第一講:水循環(huán)與水污染[J];水文;1981年01期
6 劉春蓁;;關(guān)于水循環(huán)研究的若干問(wèn)題[J];水文;1989年02期
7 尚隨營(yíng);李兆斌;;“水圈和水循環(huán)”內(nèi)容詳析[J];地理教育;2011年10期
8 孫德佩;;古今漫話水循環(huán)[J];地球;1988年01期
9 于貴瑞,王秋鳳;我國(guó)水循環(huán)的生物學(xué)過(guò)程研究進(jìn)展[J];地理科學(xué)進(jìn)展;2003年02期
10 劉昌明;黃河流域水循環(huán)演變?nèi)舾蓡?wèn)題的研究[J];水科學(xué)進(jìn)展;2004年05期
相關(guān)會(huì)議論文 前10條
1 華偉南;;城市水循環(huán)改善的戰(zhàn)略思考[A];中國(guó)原水論壇專輯[C];2010年
2 胡燕;;從系統(tǒng)論角度探討水循環(huán)的教學(xué)方法[A];山地環(huán)境與生態(tài)文明建設(shè)——中國(guó)地理學(xué)會(huì)2013年學(xué)術(shù)年會(huì)·西南片區(qū)會(huì)議論文集[C];2013年
3 張光輝;;區(qū)域水循環(huán)過(guò)程與水資源演化規(guī)律——規(guī)范人類用水行為、確保社會(huì)經(jīng)濟(jì)可持續(xù)發(fā)展的重大科學(xué)基礎(chǔ)[A];第四屆全國(guó)青年地質(zhì)工作者學(xué)術(shù)討論會(huì)論文集[C];1999年
4 鞏同梁;劉昌明;;環(huán)境變化條件下陸地表層系統(tǒng)水循環(huán)非均衡模式——水循環(huán)非均衡現(xiàn)象剖析與邊際水循環(huán)概念[A];中國(guó)青藏高原研究會(huì)2006學(xué)術(shù)年會(huì)論文摘要匯編[C];2006年
5 李析男;胡彩虹;;城市水循環(huán)對(duì)城市供水量的影響分析[A];農(nóng)業(yè)、生態(tài)水安全及寒區(qū)水科學(xué)——第八屆中國(guó)水論壇摘要集[C];2010年
6 夏軍;;變化環(huán)境下中國(guó)北方水循環(huán)與水安全研究面臨的問(wèn)題與展望(以華北地區(qū)水問(wèn)題為例)[A];中國(guó)水力發(fā)電工程學(xué)會(huì)水文泥沙專業(yè)委員會(huì)第六屆學(xué)術(shù)討論會(huì)論文集[C];2005年
7 馬智杰;徐小元;居江;;區(qū)域良性水循環(huán)的探討和示范[A];中國(guó)水利學(xué)會(huì)2005學(xué)術(shù)年會(huì)論文集——節(jié)水型社會(huì)建設(shè)的理論與實(shí)踐[C];2005年
8 馬智杰;徐小元;居江;;區(qū)域良性水循環(huán)的探討和示范[A];中國(guó)水利學(xué)會(huì)第二屆青年科技論壇論文集[C];2005年
9 劉昌明;梁康;;作為水文科學(xué)基本理論的水循環(huán)研究若干探討[A];中國(guó)水文科技新發(fā)展——2012中國(guó)水文學(xué)術(shù)討論會(huì)論文集[C];2012年
10 孫廷春;;發(fā)展煤礦“水循環(huán)經(jīng)濟(jì)”[A];2007中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)優(yōu)秀論文集(上卷)[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 杜中 吳慧秀(河海大學(xué));城市用水給自然水循環(huán)帶來(lái)了挑戰(zhàn)[N];中國(guó)水利報(bào);2011年
2 李平 趙建平;流域時(shí)代的理性回歸[N];中國(guó)水利報(bào);2004年
3 慧聰;工業(yè)水循環(huán):人類水危機(jī)的最后“救贖”[N];黃河報(bào);2010年
4 王富;攀鋼實(shí)現(xiàn)增產(chǎn)節(jié)水循環(huán)發(fā)展[N];中國(guó)礦業(yè)報(bào);2006年
5 本報(bào)記者 楊勤;江蘇:流動(dòng)的水循環(huán)的路[N];中國(guó)水利報(bào);2006年
6 錢建偉;1.4億清除水循環(huán)“瓶頸”[N];蘇州日?qǐng)?bào);2006年
7 周賓 陜西省社會(huì)科學(xué)院經(jīng)濟(jì)研究所;“易學(xué)”視野中的水循環(huán)[N];中國(guó)社會(huì)科學(xué)報(bào);2012年
8 特約專家 齊兵強(qiáng) 全國(guó)節(jié)約用水辦公室 博士;用水循環(huán)體系建設(shè)是特色[N];中國(guó)水利報(bào);2006年
9 王勤;旨在破解當(dāng)代水問(wèn)題的力作[N];中國(guó)水利報(bào);2008年
10 程晨;上海建成水循環(huán)公廁一噸水用“一輩子”[N];新華每日電訊;2003年
相關(guān)博士學(xué)位論文 前3條
1 畢彥杰;變化環(huán)境下流域/區(qū)域水循環(huán)特征與規(guī)律研究[D];中國(guó)水利水電科學(xué)研究院;2017年
2 李文生;流域水資源承載力及水循環(huán)評(píng)價(jià)研究[D];大連理工大學(xué);2008年
3 劉佳嘉;變化環(huán)境下渭河流域水循環(huán)分布式模擬與演變規(guī)律研究[D];中國(guó)水利水電科學(xué)研究院;2013年
相關(guān)碩士學(xué)位論文 前10條
1 武猛;基于二元水循環(huán)理論的河北省用水量分析[D];河北農(nóng)業(yè)大學(xué);2015年
2 周杰;中國(guó)東北地區(qū)大氣水循環(huán)的時(shí)空特征及其對(duì)降水的影響[D];揚(yáng)州大學(xué);2015年
3 顧磊;基于二元水循環(huán)模擬的涇河流域干旱危機(jī)診斷與調(diào)控研究[D];長(zhǎng)安大學(xué);2016年
4 喬石磊;啟發(fā)式水循環(huán)算法及應(yīng)用研究[D];廣西民族大學(xué);2016年
5 耿蓉;基于衛(wèi)星和再分析數(shù)據(jù)的大氣水循環(huán)變量比較和分析[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
6 楊峰;健康水循環(huán)與新的水策略[D];西北農(nóng)林科技大學(xué);2007年
7 孟彩俠;基于不同方法的和田綠洲水循環(huán)要素變化特征研究[D];西安理工大學(xué);2006年
8 章純;水循環(huán)算法在結(jié)構(gòu)優(yōu)化設(shè)計(jì)中的應(yīng)用及其在多目標(biāo)中的改進(jìn)[D];廣東工業(yè)大學(xué);2014年
9 馬喜榮;黃河流域水循環(huán)流路的改變對(duì)物質(zhì)輸送及能量交換的影響[D];河海大學(xué);2005年
10 許向君;城市水務(wù)系統(tǒng)循環(huán)規(guī)律與評(píng)價(jià)指標(biāo)體系研究[D];山東農(nóng)業(yè)大學(xué);2007年
,本文編號(hào):2243582
本文鏈接:http://www.sikaile.net/shoufeilunwen/benkebiyelunwen/2243582.html