魚群和鳥群遷徙運(yùn)動(dòng)中的流體力學(xué)機(jī)理研究
[Abstract]:The migration of fish or birds in regular formation is a common phenomenon in nature. Exploring the principle of hydrodynamics is not only helpful to understand the inherent mechanism of the movement of fish and birds, but also beneficial to the structural and formation optimization design of bionic vehicles and underwater vehicles. In this paper, a lateral free elastic filament model is proposed and placed downstream of flapping wing. The motion characteristics and flow field structures of filaments in different vortex streets (Carmen vortex street, straight vortex street and anti-Carmen vortex street) are investigated. Four motion modes are found. Formula 1: The filament vibrates in the outer side of the vortex street, the filament shuttles between the vortex cores, the filament is clamped between the vortex bands, and the filament vibrates in the outer side of the vortex street. The drag in vortex street corresponds to the Straughal number St = 0.3-0.4 for this motion pattern, and to the Straughal number St = 0.2-0.4 for the fish with the best propulsion efficiency; in most Karmen vortex streets, the filaments move back and forth between the vortex cores, which is related to the behavior of swimming fish hiding downstream of obstacles. Similarly, in the vortex street with vortex bands, the filament lengthens the original vortex band in the vortex street, and the filament is swinging up and down between the two sides of the vortex bands. The wake shedding of the upstream flapping wing is delayed at the tail of the filament, and the drag of the upstream flapping wing decreases. In the dense Karman vortex street (the distance between adjacent vortex cores is small), the filament can only produce weak vibration. The amplitude is less than 5% of the filament length, the elastic filament has no vortex shedding, and the original vortex street is destroyed in the flow field. At this time, the resistance of the flapping wing on the upstream reaches a significant reduction (up to 14%). The results show that the optimal configuration of the overall propulsion efficiency is related to the individual motion: the tilted formation with D_x=0.5 and Dy=0.3 has the best overall propulsion efficiency when two fish move synchronously, and the inverted three with D_x=0.75 when three fish move synchronously. In addition, when the longitudinal spacing is less than the individual length, the thrust and propulsion efficiency of the back swimming fish is better than that of the front swimming fish; when the longitudinal spacing is greater than the individual length, the thrust and propulsion efficiency of the front swimming fish will be better than that of the back swimming fish. In this paper, a two-flapping-wing model with parallel arrangement is constructed, and the effects of amplitude A, frequency f, spacing L and angle of attack on the propulsion characteristics and flow field structure are numerically studied. The results show that, compared with the single wing vibration, the single wing in the symmetrical vibration of the two wings produces greater thrust and stronger flow field structure under the same parameter space. Vortex and jet have better propulsion performance, and the larger the amplitude or frequency, the smaller the spacing, the more obvious the advancing advantage of the two wings. This is because the symmetrical vibration of the two wings can produce greater pressure difference between the upper and lower wing surface, thus resulting in greater thrust and propulsion efficiency. The chaotic vortex structure is due to the backward suction phenomenon, that is, the vortex which has fallen off at the end of the closure movement will be sucked between the wings in the open motion and merged with the newly formed vortex, resulting in the chaotic vortex street structure. In compressible viscous flow, the interaction between the motion of elastic filaments and the flow field around them is discovered, and the relationship between the formation parameters and the motion parameters and the group propulsion efficiency is obtained. The fluid-solid coupling mechanism between individuals is explained according to the variation of the flow field structure, so as to further understand the migration of fish and birds. The mechanism of fluid mechanics provides some references.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V211
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張建;淺談渦街流量表在蒸汽計(jì)量中的應(yīng)用[J];科技資訊;2005年27期
2 松井辰彌 ,Muneshige Okude ,王復(fù);低雷諾數(shù)時(shí)卡門渦街的重新排列[J];力學(xué)進(jìn)展;1981年03期
3 蔣興偉;葉小敏;宋清濤;丁靜;;中國“海洋一號”衛(wèi)星圖像上的馮·卡門大氣渦街現(xiàn)象與動(dòng)力分析[J];海洋學(xué)報(bào)(中文版);2013年03期
4 戴光清,LAM K M;圓柱振蕩流中的斜向渦街[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);2003年02期
5 李永光,盧家才,王樹眾,林宗虎,王彌康;柱體形狀對氣液兩相渦街的影響[J];應(yīng)用力學(xué)學(xué)報(bào);1996年02期
6 陳科;尤云祥;胡天群;朱敏慧;王小青;;分層流體中移動(dòng)動(dòng)量源生成準(zhǔn)二維偶極子渦街特性實(shí)驗(yàn)[J];物理學(xué)報(bào);2011年02期
7 袁芳;江偉;魏雄;李百輿;;渦街流量信號處理方法[J];實(shí)驗(yàn)室研究與探索;2013年12期
8 李永光,林宗虎;氣液兩相渦街的數(shù)值計(jì)算[J];力學(xué)與實(shí)踐;1997年03期
9 武作兵,凌國燦;Kàrmàn渦街流場的定性分析研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);1994年03期
10 陳潔,李斌;渦街流量信號處理中FFT譜分析法的探討[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
相關(guān)會(huì)議論文 前4條
1 張東明;;非對稱渦街成因的初步研究[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年
2 何離慶;胥斌;劉瓊蓀;;基于小波分析的受擾渦街流量信號處理[A];中國儀器儀表學(xué)會(huì)測控技術(shù)在資源節(jié)約和環(huán)境保護(hù)中的應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
3 劉哲;李冬霞;周奇;張興偉;;單一渦街對方形柱體流場影響研究[A];第十六屆全國流體力學(xué)數(shù)值方法研討會(huì)2013論文集[C];2013年
4 羅清林;徐科軍;;基于頻率特征的單渦街流量傳感器抗強(qiáng)干擾信號處理方法[A];PCC2009—第20屆中國過程控制會(huì)議論文集[C];2009年
相關(guān)博士學(xué)位論文 前4條
1 林曉琳;光纖式渦街流量測量技術(shù)的研究[D];燕山大學(xué);2011年
2 鄭丹丹;渦街流量傳感器小流量測量性能研究[D];天津大學(xué);2009年
3 孫志強(qiáng);基于渦街特性的流動(dòng)分析與參數(shù)檢測[D];浙江大學(xué);2007年
4 黃詠梅;基于差壓原理的渦街質(zhì)量流量測量方法研究[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 朱徐立;超聲波渦街風(fēng)速計(jì)的研究及理論分析[D];廈門大學(xué);2008年
2 汪帥;高壓渦輪尾跡渦街特性數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2016年
3 李霄;基于加速度測量的渦街探頭設(shè)計(jì)與實(shí)現(xiàn)[D];天津大學(xué);2014年
4 林星箭;魚群和鳥群遷徙運(yùn)動(dòng)中的流體力學(xué)機(jī)理研究[D];南昌航空大學(xué);2017年
5 穆雙琴;壓電渦街傳感器特性參數(shù)分析儀器研究[D];東北大學(xué);2011年
6 任啟明;低功耗智能渦街流量變送器的設(shè)計(jì)與研制[D];合肥工業(yè)大學(xué);2008年
7 薛曉光;超聲渦街流量測量技術(shù)算法的研究[D];天津工業(yè)大學(xué);2007年
8 王麗翠;基于卡曼渦街的質(zhì)量流量測量研究[D];華北電力大學(xué);2014年
9 項(xiàng)銀杰;差壓式渦街質(zhì)量流量計(jì)信號處理系統(tǒng)的研制[D];浙江大學(xué);2007年
10 張磊;基于渦街流量傳感器的濕氣測量方法研究[D];合肥工業(yè)大學(xué);2010年
,本文編號:2239206
本文鏈接:http://www.sikaile.net/shoufeilunwen/benkebiyelunwen/2239206.html