光生物反應器中市政污水培養(yǎng)鈍頂螺旋藻的條件優(yōu)化
本文選題:鈍頂螺旋藻 + 光生物反應器 ; 參考:《江南大學》2017年碩士論文
【摘要】:微藻分布十分廣泛,其光合效率高、繁殖速度快、環(huán)境適應能力強。微藻培養(yǎng)過程中需消耗大量的水資源和碳、氮、磷等營養(yǎng)鹽,使其規(guī);a成本較高。利用污水培養(yǎng)微藻,能夠回收利用污水中氮磷等營養(yǎng)元素,獲得微藻生物質并實現污水凈化,具有較高的經濟、社會和環(huán)境效益。本文選擇經濟價值高、環(huán)境適應能力強的鈍頂螺旋藻為研究對象,以市政污水為螺旋藻培養(yǎng)液,以PBR和MPBR為螺旋藻培養(yǎng)和分離的反應器,探究市政污水培養(yǎng)鈍頂螺旋藻的適宜條件。為提高螺旋藻生物量,對碳源、HRT、藻密度等培養(yǎng)條件以及批次、半連續(xù)、連續(xù)的培養(yǎng)方式進行優(yōu)化調整;同時為延長膜使用壽命,在分析膜污染物質的基礎上確定適宜膜孔徑和膜清洗方法;最后,通過實驗數據和動力學方法分析比較PBR與MPBR的運行效果。本文的主要研究結果如下:(1)市政污水添加0.80 g/LNaHCO_3能夠用于螺旋藻的培養(yǎng)。(2)錐形瓶中批次培養(yǎng)螺旋藻至第12天生物量最高,為1.51g/L。(3)PBR連續(xù)培養(yǎng)螺旋藻時,確定適宜HRT為20 d,反應器中藻密度維持在1.00g/L-1.20 g/L。采收螺旋藻生物量為0.42 g/d,污水進水量為0.35L/d。不同HRT下螺旋藻對氮、磷營養(yǎng)鹽的去除效果相似,NH_4~+-N、TN、TP去除率分別為98.52%-99.03%、90.43%-95.22%、88.25%-96.81%,出水NH_4~+-N、TN、TP濃度均達到《國家城鎮(zhèn)污水處理廠污染物排放標準》(GB18918-2002)一級A排放標準。(4)MPBR半連續(xù)培養(yǎng)螺旋藻時,確定最短HRT為1.75d,反應器中螺旋藻密度約為1.80 g/L-2.00 g/L。MPBR連續(xù)培養(yǎng)螺旋藻時,HRT為1.75 d、MRT為20d時,采收螺旋藻生物量為0.69 g/d,污水中藻細胞的蛋白質、碳水化合物和葉綠素a含量等細胞組分與培養(yǎng)基中藻細胞的相近。污水進水量為4 L/d,NH_4~+-N、TN、TP、COD的去除率分別為93.54%-98.97%、77.06%-90.24%、48.37%-66.91%和23.37%-47.28%,出水NH_4~+-N、TN濃度達到一級A標準,TP濃度達到一級B標準,出水中多種金屬離子含量均低于進水。污水中約93.15%的N元素、95.57%的P元素被螺旋藻吸收利用,轉化為自身細胞的組成物質。(5)EEM、SEM和EDX分析膜面污染物結果顯示,進水膜面主要是EOM等有機物形成的濾餅層污染,出水膜面附著含Ca為主的無機沉淀物,部分膜孔徑堵塞。過濾藻液時適宜的膜孔徑為0.45μm;膜清洗方法為將污染膜片超聲振蕩0.50 h,再先后利用pH值為2的鹽酸和200mg/LNaClO溶液浸泡清洗2h,清洗后純水通量恢復為初始純水通量的94.29%。(6)市政污水培養(yǎng)螺旋藻過程中,與PBR相比MPBR能耗和成本較高,但MPBR能夠明顯提高藻密度和污水負荷,反應器操作條件更靈活、運行更穩(wěn)定。實驗結果表明,MPBR中螺旋藻密度約為PBR的2倍,采收量從0.42g/d提高至0.69g/d;HRT顯著縮短,污水進水量是PBR的11倍,進水N負荷從7.70 mg/d-8.05 mg/d提高至122.28mg/d-137.96mg/d,進水P負荷從0.44mg/d-0.50 mg/d提高至7.57 mg/d-8.21 mg/d;MPBR中去除N、P的量分別為PBR的14-15倍、9-11倍。動力學分析從理論上表明MPBR應用于螺旋藻培養(yǎng)方面的有效性。
[Abstract]:Microalgae are widely distributed, with high photosynthetic efficiency, rapid reproduction rate and strong environmental adaptability. In the process of microalgae culture, a large amount of water resources and nutrients such as carbon, nitrogen and phosphorus are consumed, which makes the production cost of microalgae on a large scale higher. Using sewage to cultivate microalgae can recover nutrient elements such as nitrogen and phosphorus in sewage, obtain microalgae biomass and realize sewage purification, which has higher economic, social and environmental benefits. In this paper, Spirulina platensis with high economic value and strong adaptability to environment was selected as the research object. The municipal sewage was used as the culture medium of spirulina, and PBR and MPBR were used as the reactors for the culture and separation of spirulina. To explore the suitable conditions for the cultivation of Spirulina platensis by municipal sewage. In order to improve the biomass of Spirulina platensis, the culture conditions such as carbon source HRT, algal density, batch, semi-continuous and continuous culture methods were optimized and adjusted to prolong the service life of the membrane. Based on the analysis of membrane fouling materials, the suitable membrane pore size and membrane cleaning method were determined. Finally, the operation effects of PBR and MPBR were analyzed and compared by means of experimental data and kinetic method. The main results are as follows: (1) municipal sewage added 0.80 g / L NaHCO3 can be used in the culture of spirulina. (2) the biomass of spirulina cultured in conical flask was the highest up to the 12th day, which was 1.51g / L. (3) when PBR was used to culture spirulina continuously, The optimum HRT was 20 days and the algae density in the reactor was maintained at 1.00 g / L ~ (-1) g 路L ~ (-1) 路L ~ (-1). The biomass of Spirulina was 0.42 g / d and the influent of sewage was 0.35 L / d. The removal rates of nitrogen and phosphorus nutrients of Spirulina platensis under different HRT conditions were 98.52- 99.03and 90.43- 95.2222and 88.25- 96.81respectively, the removal efficiency of NH4- NnnnTTP was 98.52- 99.030.The effluent NH _ 4~ -NTN _ (TNN) TP concentration reached the first A discharge standard (GB18918-2002). (4) when the spirulina was cultured semi-continuously with MPBR, the effluent NH4- ~ -NN _ (TNN) _ (TP) reached the first class A discharge standard (GB18918-2002). The shortest HRT was 1.75 days, the density of spirulina was about 1.80 g / L ~ (-2.00) g / L ~ (MPBR) in the reactor, when the HRT was 1.75 d ~ (-1) MRT was 20 days, the biomass of Spirulina was 0.69 g / d, and the protein of algae cells in sewage was obtained. The contents of carbohydrates and chlorophyll a were similar to those of algal cells in culture medium. The removal rate of TPCOD in effluent was 93.54-98.97 and 77.06-90.2424It was 48.37-66.91% and 23.37-47.28.1%, respectively. The effluent NH _ 4~ -NN _ N _ (TN) concentration reached the first A standard TP standard, and the content of many metal ions in the effluent was lower than that in the influent. About 93.15% of N elements in sewage were absorbed by spirulina and converted into components of its own cells. (5) the results of EEMU SEM and edX analysis showed that the main fouling of the influent membrane was the filter cake layer formed by organic compounds such as EOM. Inorganic precipitates containing Ca were attached to the surface of the membrane, and some of the pore sizes of the membrane were blocked. The optimum membrane pore size is 0.45 渭 m when the algae solution is filtered, the membrane cleaning method is to oscillate the contaminated membrane by ultrasonic for 0.50 h, then soak and clean the membrane with pH 2 hydrochloric acid and 200 mg / L NaClO solution for 2 h, and the pure water flux is recovered to 94.29% of the original pure water flux after cleaning. (6) In the process of cultivation of spirulina by sewage, Compared with PBR, MPBR has higher energy consumption and higher cost, but MPBR can significantly increase algae density and sewage load, and the operation conditions of the reactor are more flexible and stable. The experimental results showed that the density of Spirulina in MPBR was about 2 times of that of PBR, the yield of Spirulina was increased from 0.42g/d to 0.69 g / d HRT, and the water intake was 11 times higher than that of PBR. The N load of influent increased from 7.70 mg/d-8.05 mg/d to 122.28 mg / d-137.96 mg / d, and the amount of N P removed from 0.44mg/d-0.50 mg/d to 7.57 mg / d was 14-15 times and 9-11 times of that of 0.44mg/d-0.50 mg/d, respectively. The kinetic analysis showed that MPBR was effective in the culture of Spirulina platensis.
【學位授予單位】:江南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X703
【參考文獻】
相關期刊論文 前10條
1 劉雪艷;蘇忠亮;;微藻生物燃料的研究進展[J];化學與生物工程;2017年03期
2 徐倩;任洪艷;王雪飛;阮文權;;利用餐廚中水培養(yǎng)鈍頂螺旋藻[J];環(huán)境工程學報;2017年02期
3 東方;;微藻多糖藥理活性及應用研究進展[J];齊齊哈爾醫(yī)學院學報;2016年30期
4 陳寧;吳晶;;進氣布置對鼓泡式微藻光生物反應器混合性能影響的數值研究[J];工程熱物理學報;2016年10期
5 魏東;馬超;袁君怡;;分級提取螺旋藻中營養(yǎng)物質新工藝[J];中國食品學報;2016年08期
6 魏源送;王健行;岳增剛;王鋼;李昆;鐘慧;張兆昌;楊金;;納濾膜技術在廢水深度處理中的膜污染及控制研究進展[J];環(huán)境科學學報;2017年01期
7 李姿;徐倩;任洪艷;阮文權;;不同培養(yǎng)模式對鈍頂螺旋藻生長和固碳速率的影響[J];環(huán)境工程學報;2016年04期
8 付麗麗;那日;郭久峰;金晶;;螺旋藻藻藍蛋白提取純化方法研究進展[J];生物技術通報;2016年01期
9 王蘇儀;常雪瑩;趙帥;張汝楠;潘昱霖;周曉蓉;;螺旋藻多糖對糖尿病大鼠血糖及抗氧化作用的影響[J];職業(yè)與健康;2015年23期
10 王政;;螺旋藻的營養(yǎng)價值及應用[J];才智;2014年27期
相關博士學位論文 前2條
1 沈俏會;基于產油微藻的污水深度處理及過程調控[D];浙江大學;2015年
2 鮑亦璐;微藻培養(yǎng)過程的營養(yǎng)優(yōu)化與控制研究[D];華南理工大學;2012年
相關碩士學位論文 前10條
1 崔皓;微藻—膜生物反應器系統(tǒng)運行效果研究[D];哈爾濱工業(yè)大學;2016年
2 徐長健;柱狀光生物反應器螺旋藻系統(tǒng)對污水中N、P的深度處理研究[D];重慶大學;2016年
3 徐倩;基于氮磷吸收的餐廚廢水培養(yǎng)螺旋藻的過程研究[D];江南大學;2016年
4 廖利民;基于微藻培養(yǎng)技術的廢水資源化利用研究[D];內蒙古科技大學;2015年
5 徐暢;利用綠藻處理高氨氮養(yǎng)豬沼液的預處理方法研究[D];南昌大學;2014年
6 常園園;尿液和城市廢水應用于微藻的培養(yǎng)[D];浙江大學;2013年
7 趙強強;醬油制曲及螺旋藻醬油生產工藝的研究[D];中國海洋大學;2012年
8 孫雪飛;維生素B2廢水培養(yǎng)富油微藻及其膜濃縮分離[D];武漢工程大學;2012年
9 呂素娟;城市生活廢水用于培養(yǎng)產油微藻[D];中國海洋大學;2011年
10 黃魁;藻類去除污水中氮磷及其機理的研究[D];南昌大學;2007年
,本文編號:2069289
本文鏈接:http://www.sikaile.net/shengtaihuanjingbaohulunwen/2069289.html