一體化反應(yīng)器處理高氨氮廢水的中試啟動(dòng)及運(yùn)行控制研究
本文選題:亞硝化 + 厭氧氨氧化; 參考:《蘇州科技大學(xué)》2017年碩士論文
【摘要】:本文針對(duì)高氨氮廢水的處理,啟動(dòng)了中試PN-ANAMMOX一體化實(shí)驗(yàn)裝置。本文首先從亞硝化的啟動(dòng)著手,研究了亞硝化啟動(dòng)過程中的控制策略以及能力提升過程中的參數(shù)控制。然后通過降低進(jìn)水氨氮負(fù)荷以及同步降低曝氣量等方式實(shí)現(xiàn)了符合ANAMMOX工藝進(jìn)水配比的亞硝化反應(yīng)器的調(diào)控。最后將PN-ANAMMOX聯(lián)合在一起,實(shí)現(xiàn)聯(lián)合工藝的穩(wěn)定運(yùn)行及其脫氮能力的提升,并借助于qPCR分析了各區(qū)域功能菌的變化。本研究旨在為高氨廢水的高效低耗脫氮提供新思路和理論指導(dǎo)。主要研究結(jié)果如下:(1)中試連續(xù)流亞硝化反應(yīng)器在中溫(19~27℃)的條件下,通過對(duì)不同運(yùn)行階段的溶解氧進(jìn)行調(diào)控(前期DO=6.0±1.0mg·L-1、后期DO=0.6±0.1mg·L-1),以及根據(jù)亞硝酸鹽產(chǎn)生速率的提升合適的提高進(jìn)水氨氮負(fù)荷和對(duì)曝氣量的合理調(diào)控是中試連續(xù)流亞硝化反應(yīng)器成功啟動(dòng)的關(guān)鍵。經(jīng)過110天的運(yùn)行,反應(yīng)器的NPR達(dá)到了1.2 kg N m-3·d-1。(2)通過高FA、高FNA以及低DO的聯(lián)合抑制可以有效的啟動(dòng)亞硝化過程,本實(shí)驗(yàn)在啟動(dòng)過程中控制了FA濃度在5.0~20mg·L-1、FNA濃度在0.025~0.033 mg/L及DO濃度在0.6±0.1mg·L-1之間,實(shí)現(xiàn)AOB的富集、NOB的淘汰、中試連續(xù)流亞硝化反應(yīng)器的成功啟動(dòng),亞硝化成功啟動(dòng)后出水硝氮濃度穩(wěn)定在8 mg·L-1,NAR穩(wěn)定在0.98以上。(3)通過110天的運(yùn)行,中試連續(xù)流亞硝化反應(yīng)器中功能微生物AOB的占比逐漸提高,從啟動(dòng)初期的5.3×109到成功啟動(dòng)后AOB的拷貝數(shù)達(dá)到了1.6×1011,NOB的拷貝數(shù)反而從1.1×1010下降到1.2×109,AOB拷貝數(shù)的數(shù)量級(jí)比NOB的要高2個(gè)數(shù)量級(jí),這也是反應(yīng)器內(nèi)部硝氮濃度較低以及高NAR的原因所在。(4)中試連續(xù)流亞硝化反應(yīng)器在中溫(31~35℃)的條件下,通過降低進(jìn)水氨氮負(fù)荷,降低供氣量以及將反應(yīng)器內(nèi)部多余的亞硝化污泥排除系統(tǒng),成功的實(shí)現(xiàn)了匹配ANAMMOX工藝進(jìn)水的亞硝化反應(yīng)的調(diào)控。匹配成功后ANAMMOX工藝進(jìn)水水質(zhì)配比亞氮:氨氮=(1.0-1.5):1。(5)通過高FA、適宜的溫度以及低DO的聯(lián)合抑制可以有效的抑制NOB的活性。本實(shí)驗(yàn)在調(diào)控匹配ANAMMOX工藝進(jìn)水的亞硝化過程中控制了FA濃度在2~8mg·L-1、溫度在31℃~35℃及DO濃度在0.5~1mg·L-1之間,可有效的抑制NOB的活性,NAR穩(wěn)定在0.92以上。(6)在聯(lián)合工藝脫氮能力提升的過程中,通過提高進(jìn)水氨氮濃度和提高進(jìn)水流量兩種方式提高進(jìn)水氮負(fù)荷,經(jīng)過71天的運(yùn)行,反應(yīng)器脫氮速率達(dá)到0.431kg N m-3·d-1。(7)采取可實(shí)時(shí)監(jiān)測聯(lián)合工藝運(yùn)行參數(shù)的WTW監(jiān)測儀器對(duì)反應(yīng)器運(yùn)行狀況進(jìn)行監(jiān)測,可及時(shí)獲取相關(guān)數(shù)據(jù),并對(duì)當(dāng)前的運(yùn)行狀況可作出及時(shí)調(diào)整,可減少反應(yīng)器在運(yùn)行過程中處于非正常運(yùn)行狀態(tài)的時(shí)間,對(duì)反應(yīng)器脫氮能力的提升起到了非常大的作用。(8)根據(jù)反應(yīng)器出現(xiàn)問題應(yīng)及時(shí)的采取相應(yīng)措施進(jìn)行恢復(fù),盡量減少反應(yīng)器處于不正常狀態(tài)下的時(shí)間,同時(shí)實(shí)現(xiàn)對(duì)反應(yīng)器內(nèi)部的數(shù)據(jù)也應(yīng)進(jìn)行及時(shí)的監(jiān)測,只有了解了反應(yīng)器內(nèi)部的情況后才能對(duì)參數(shù)上得出的相關(guān)經(jīng)驗(yàn)結(jié)論進(jìn)行驗(yàn)證,并進(jìn)行調(diào)整。
[Abstract]:Aiming at the treatment of high ammonia nitrogen waste water, a pilot PN-ANAMMOX integrated experimental device was started. Firstly, starting from the start of nitrification, the control strategy and the parameter control during the process of nitrosation start were studied, and then the characters were realized by reducing the load of inflow ammonia nitrogen and reducing the aeration synchronously. The ANAMMOX process is controlled by the nitrosation reactor of the influent ratio. Finally, the PN-ANAMMOX is combined to achieve the stable operation of the combined process and the lifting of the nitrogen removal capacity, and the changes in the functional bacteria in various regions are analyzed with the help of qPCR. The aim of this study is to provide new ideas and theoretical guidance for the high efficiency and low consumption of nitrogen in the high ammonia wastewater. The results are as follows: (1) under the condition of medium temperature (19~27 C), the pilot continuous flow nitrosation reactor regulates the dissolved oxygen at different stages (pre DO=6.0 1.0mg / L-1, DO=0.6 + 0.1mg L-1), as well as the improvement of the influent ammonia nitrogen load and the reasonable regulation of aeration according to the enhancement of nitrite production rate. After 110 days' operation, the NPR of the reactor reached 1.2 kg N m-3. D-1. (2) through high FA, high FNA and low DO, which could effectively start the nitrosation process. The concentration is between 0.6 + 0.1mg and L-1, which realizes the enrichment of AOB, the elimination of NOB, the successful start of the continuous flow nitrosation reactor, the nitrite nitrogen concentration is stable at 8 mg. L-1, and the NAR is stable over 0.98. (3) the ratio of functional microorganisms AOB to the continuous flow nitrosation reactor is gradually increased through the operation of 110 days. The number of copies of AOB reached 1.6 * 1011 from the initial start of the initial start, and the copy number of NOB dropped from 1.1 x 1010 to 1.2 * 109, and the number of AOB copies was 2 orders of magnitude higher than that of NOB. This was also the cause of the low nitrate concentration and high NAR in the reactor. (4) the continuous flow nitrosation reactor in the medium temperature (3) (4) was in the middle temperature (4). Under the condition of 1~35 C), by reducing the load of ammonia nitrogen, reducing the amount of gas supply and removing the excess nitrification sludge removal system inside the reactor, the subnitrification reaction was successfully realized by matching the influent of the ANAMMOX process. After the match, the water quality of the ANAMMOX process was proportional to nitrogen: ammonia nitrogen = (1.0-1.5): 1. (5) passed the high FA, suitable temperature. The combined inhibition of degree and low DO can effectively inhibit the activity of NOB. In this experiment, the concentration of FA was controlled in 2~8mg. L-1 during the process of regulating the influent nitrosation of the matched ANAMMOX process. The temperature was between 0.5~1mg and DO at 31 degrees C and DO concentration. The NOB activity was effectively suppressed, and NAR stabilized at 0.92. (6) the ability to remove nitrogen from the combined process. In the process of rising, the influent nitrogen load is increased by increasing the influent ammonia nitrogen concentration and increasing the influent flow rate. After 71 days of operation, the nitrogen removal rate of the reactor reaches 0.431kg N m-3. D-1. (7). The WTW monitoring instrument which can monitor the operating parameters of the joint process can monitor the operating condition of the reactor, and the relevant data can be obtained in time. And the current operation condition can be adjusted in time, which can reduce the time of the reactor in the abnormal running state and improve the nitrogen removal capacity of the reactor. (8) according to the problem of the reactor, the corresponding measures should be taken in time to recover and minimize the unnormal state of the reactor. At the same time, the data within the reactor should be monitored in time. Only after understanding the internal situation of the reactor can the relevant empirical conclusions from the parameters be verified and adjust.
【學(xué)位授予單位】:蘇州科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X703
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于德爽;魏思佳;李津;齊泮晴;管勇杰;;溫度對(duì)厭氧氨氧化與反硝化耦合脫氮除碳的影響[J];中國環(huán)境科學(xué);2016年05期
2 黃鵬飛;張錦耀;秦玉潔;李伙生;周少奇;;CANON工藝的典型抑制及其恢復(fù)性策略[J];環(huán)境工程學(xué)報(bào);2016年05期
3 趙夢(mèng)月;彭永臻;王博;郭媛媛;;SBR工藝實(shí)現(xiàn)長期穩(wěn)定的部分短程硝化[J];化工學(xué)報(bào);2016年06期
4 李祥;崔劍虹;袁硯;黃勇;袁怡;劉忻;;高氨氮對(duì)具有回流的PN-ANAMMOX串聯(lián)工藝的脫氮影響[J];環(huán)境科學(xué);2015年10期
5 崔劍虹;李祥;黃勇;;部分亞硝化-厭氧氨氧化工藝聯(lián)合形式、應(yīng)用及脫氮效能評(píng)析[J];化工進(jìn)展;2015年08期
6 李亞峰;張馳;;常溫限氧條件下有機(jī)碳源對(duì)與厭氧氨氧化匹配的亞硝化的影響研究[J];水處理技術(shù);2015年07期
7 張正哲;金仁村;程雅菲;周煜璜;布阿依·謝姆古麗;;厭氧氨氧化工藝的應(yīng)用進(jìn)展[J];化工進(jìn)展;2015年05期
8 張黎;胡筱敏;姜彬慧;韓天放;;亞硝化SBR反應(yīng)器快速啟動(dòng)過程的控制條件優(yōu)化[J];環(huán)境工程;2014年10期
9 趙志瑞;侯彥林;;半短程亞硝化與厭氧氨氧化聯(lián)合脫氮工藝微生物特征研究進(jìn)展[J];環(huán)境科學(xué);2014年07期
10 蘇東霞;李冬;張肖靜;張功良;周元正;范丹;張杰;;不同曝氣方式SBR短程硝化試驗(yàn)研究[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期
,本文編號(hào):1923607
本文鏈接:http://www.sikaile.net/shengtaihuanjingbaohulunwen/1923607.html