顆粒粉塵在通風管道內(nèi)的運移規(guī)律研究
本文關鍵詞:顆粒粉塵在通風管道內(nèi)的運移規(guī)律研究 出處:《江西理工大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 顆粒粉塵 通風管道 粉塵濃度 數(shù)值模擬 運移規(guī)律
【摘要】:眾所周知,工業(yè)粉塵治理需通過選擇合理的除塵方法才能達到較好的降塵效果。目前,帶有長管道的機械通風除塵措施是工業(yè)粉塵治理的有效措施之一。隨著顆粒粉塵在管道內(nèi)長時間排出,管道內(nèi)勢必會產(chǎn)生沉積現(xiàn)象。如果對其中的顆粒粉塵不采取處理措施,會導致很多不良的后果,特別是在管道內(nèi)部,輕則粉塵堆積,重則導致管道堵塞、腐蝕等。在進行粉塵清除前,如能對管道內(nèi)部粉塵運移、沉降的規(guī)律有所了解,這對粉塵清除工作以及根據(jù)規(guī)律重新設計管道結構參數(shù)將會起到一定的幫助。本文以工業(yè)除塵管道為研究對象,基于流體力學、射流理論和計算流體動力學等理論,通過Fluent6.3.26模擬軟件對圓管和方管建立了物理和數(shù)學模型,采用Standard k-e模型和標準壁面函數(shù)對管道內(nèi)的風流流場進行數(shù)值分析,并模擬了風速、粉塵粒徑以及管型對管道內(nèi)粉塵濃度分布、沉積的影響。主要研究成果如下:(1)選取標準雙方程模型可以有效的數(shù)值模擬兩種管道內(nèi)部風流流場及不同粒徑粉塵的分布。(2)管道壁面壓力大小分布受管型以及粉塵粒徑影響較小,受風速影響較大。(3)在管道長度達到一定長度后,管道內(nèi)流速大小分布不受管道長度的影響,當圓管長度大于25m、方管大于30m時,管道內(nèi)流速分布穩(wěn)定,變化小。輸運風速越大,管道內(nèi)達到最大速度時的增值△v越大,但達到最大流速位置基本不變,圓管為15m處,方管為18m處。(4)不同粒徑粉塵在管道內(nèi)輸運都具有相應的最低沉積濃度輸運風速,輸運風速太低,達不到粉塵輸運的效果;輸運風速太高,能耗增大,粉塵與管壁碰撞概率增大;因此在進行通風風速設計時,應當針對不同粒徑粉塵選擇最佳輸運風速。(5)16m/s送風風速下,對于粒徑粉塵為0.25μm至2.5μm時,方管內(nèi)壁上的平均粉塵沉積濃度值要比圓管低。粒徑為0.25μm時,方管壁面平均粉塵濃度值比圓管低0.05g/m3;粒徑為2.5μm時,方管壁面平均粉塵濃度值比圓管低0.15g/m3;因此針對工業(yè)管道在16m/s風速下輸運粒徑為0.25μm至2.5μm粉塵時,可考慮采用方形管道輸運。
[Abstract]:As we all know, industrial dust control needs to select a reasonable dust removal method in order to achieve a better dust control effect. Mechanical ventilation and dust removal with long ducts is one of the effective measures for the treatment of industrial dust. If the particle dust is not treated, it will lead to a lot of adverse consequences, especially in the pipeline, light dust accumulation, heavy lead to pipeline blockage. Corrosion and so on. Before dust removal, such as the pipeline internal dust migration, settlement of the law of some understanding. This will play a certain role in dust removal and re-design of pipeline structural parameters according to the rules. This paper takes the industrial dust removal pipeline as the research object, based on hydrodynamics. Based on the theory of jet and computational fluid dynamics, the physical and mathematical models of circular and square tubes are established by Fluent6.3.26 simulation software. The Standard k-e model and the standard wall function are used to numerically analyze the air flow field in the pipeline, and the distribution of the wind speed, dust particle size and the dust concentration in the pipe is simulated. The main research results are as follows: 1) the standard two-equation model can be used to numerically simulate the airflow field and the distribution of dust with different particle sizes in two pipelines. The pressure distribution of pipe wall is less affected by pipe type and dust particle size. When the length of pipe reaches a certain length, the distribution of velocity is not affected by the length of pipe. When the length of round pipe is more than 25m, the length of square pipe is more than 30m. The velocity distribution in the pipeline is stable and the change is small. The larger the transport wind speed is, the greater the increment v is when the maximum velocity is reached in the pipeline, but the position of reaching the maximum velocity is basically unchanged, and the position of the circular pipe is 15m. The dust transport with different particle size in the pipeline has the corresponding lowest sediment concentration transport wind speed, which is too low to achieve the effect of dust transport. If the transport speed is too high, the energy consumption will increase, and the collision probability between dust and pipe wall will increase. Therefore, in the design of ventilation wind speed, we should select the best transport speed of 16 m / s for different particle size dust, when the particle size dust is 0.25 渭 m to 2.5 渭 m. The average dust concentration on the inner wall of the square tube is lower than that on the circular tube, and when the diameter is 0.25 渭 m, the average dust concentration on the wall of the square tube is 0.05g / m 3 lower than that on the round tube. When the particle size is 2.5 渭 m, the average dust concentration on the wall of the square tube is 0.15g / m ~ (-3) lower than that of the round tube. Therefore, when industrial pipelines transport dust particles from 0.25 渭 m to 2.5 渭 m at 16 m / s wind speed, square pipeline transport can be considered.
【學位授予單位】:江西理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X701.2
【參考文獻】
相關期刊論文 前10條
1 廖艷飛;王曉東;那賢昭;;金屬液純凈度的原位、在線、定量監(jiān)測方法——LiMCA技術回顧與展望[J];中國測試;2016年02期
2 蔣光彪;陽杰;鐘海;殷水平;李其勇;;高層建筑風場數(shù)值模擬研究[J];湖南城市學院學報(自然科學版);2015年03期
3 萬楚筠;黃鳳洪;李慧;張明;;基于擴散理論的油脂浸出動力學模型研究進展[J];中國油脂;2015年07期
4 趙鑫;;埕港輸油管道泄漏監(jiān)測方案比選研究[J];化工管理;2015年15期
5 李偉;袁海娣;;一種基于擴散理論的水平集方程演化算法[J];齊魯工業(yè)大學學報(自然科學版);2015年01期
6 徐昆倫;;掘進工作面風流流場和瓦斯分布數(shù)值模擬分析[J];華北科技學院學報;2014年10期
7 陳曦;葛少成;張忠溫;荊德吉;;基于Fluent多噴嘴噴霧干涉數(shù)值模擬分析[J];環(huán)境工程學報;2014年06期
8 成娟;;基于Fluent的自來水管道泄漏特性研究[J];牡丹江教育學院學報;2014年05期
9 李偉;;通風管道中細微粉塵的湍流沉積規(guī)律[J];中國粉體技術;2014年02期
10 酈建國;劉含笑;姚宇平;;微顆粒捕集增效裝置二維單擾流柱流場計算[J];華東電力;2013年11期
相關碩士學位論文 前3條
1 尹云波;長壓短抽式通風綜掘工作面粉塵運移規(guī)律研究[D];安徽建筑大學;2015年
2 劉紅芳;ZSM-5分子篩吸附煙氣中Hg~0的分子模擬與試驗研究[D];江西理工大學;2015年
3 夏長念;建筑物表面粘塵機理與防塵實驗研究[D];中南大學;2007年
,本文編號:1407553
本文鏈接:http://www.sikaile.net/shengtaihuanjingbaohulunwen/1407553.html