基于社會網(wǎng)絡(luò)分析的網(wǎng)絡(luò)輿情潛在主題發(fā)現(xiàn)研究
[Abstract]:With the rapid development and wide application of the Internet, network public opinion has become the most important part of social public opinion, and Weibo has become one of the most influential derivative places of network public opinion because of its social network characteristics and media dissemination characteristics. Most of the existing studies are based on the results of the evolution of network public opinion, which has been in a passive state of solving the problem, and can not fully meet the need of pre-warning and real-time discovery of network public opinion. The discovery of the potential topic of network public opinion can detect the core content of network public opinion in time, help to correctly grasp the law and evolution mechanism of network public opinion, and have important significance for the construction of good network public opinion environment. The research firstly combs and analyzes the existing research results on the topic discovery of network public opinion, and defines the potential topic of network public opinion based on a small number of existing research results combined with the objectives of this research; secondly, The social network analysis method theory is summarized, especially the community discovery method and node-centered method used in the research are explained and analyzed. Thirdly, the Weibo data, including Weibo content, are analyzed. Weibo user attributes and behavior data, and combing the theory and methods related to Weibo influence, and analyzing the relationship between Weibo and user behavior. On this basis, the potential topic discovery model of network public opinion is constructed, and the key indicators and methods used in the model are explained: (1) constructing user behavior relationship network based on Weibo user behavior; Give specific weight to different user behavior and relationship of concern; (2) use community discovery method to discover user relationship network and calculate relevant central index of network node; (3) calculate the influence and descending order of user node in important community. Screening key user nodes; (4) mapping community key user nodes to corresponding Weibo to obtain key Weibo nodes; (5) sorting key Weibo node content keywords by TF-IDF method, and selecting alternative potential theme words for coterm analysis. Get a list of potential theme words for topic interpretation. Finally, taking Wei Zexi incident as a case study, the effectiveness of the model is verified by an example, which verifies the validity of the model.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:C912.3;C913.4
【參考文獻】
相關(guān)期刊論文 前10條
1 胡珀;何婷婷;;基于自適應(yīng)聚類的文本潛在主題的自動發(fā)現(xiàn)[J];鄭州大學(xué)學(xué)報(理學(xué)版);2007年02期
2 朱慶華;李亮;;社會網(wǎng)絡(luò)分析法及其在情報學(xué)中的應(yīng)用[J];情報理論與實踐;2008年02期
3 趙琦;張智雄;孫坦;許雁冬;;主題發(fā)現(xiàn)技術(shù)方法研究[J];情報理論與實踐;2009年04期
4 魏瑞斌;;社會網(wǎng)絡(luò)分析在關(guān)鍵詞網(wǎng)絡(luò)分析中的實證研究[J];情報雜志;2009年09期
5 王陸;;典型的社會網(wǎng)絡(luò)分析軟件工具及分析方法[J];中國電化教育;2009年04期
6 吳昊;耿煥同;吳祥;;一種基于聚類分析的BBS主題發(fā)現(xiàn)算法研究[J];安徽師范大學(xué)學(xué)報(自然科學(xué)版);2009年01期
7 高俊波;安博文;王曉峰;;在線論壇中潛在影響力主題的發(fā)現(xiàn)研究[J];計算機應(yīng)用;2008年01期
8 易明;王學(xué)東;鄧衛(wèi)華;;基于社會網(wǎng)絡(luò)分析的社會化標簽網(wǎng)絡(luò)分析與個性化信息服務(wù)研究[J];中國圖書館學(xué)報;2010年02期
9 殷沈琴;張計龍;任磊;;基于關(guān)鍵詞共現(xiàn)和社會網(wǎng)絡(luò)分析法的數(shù)字圖書館研究熱點分析[J];大學(xué)圖書館學(xué)報;2011年04期
10 吳永輝;王曉龍;丁宇新;徐軍;郭鴻志;;基于主題的自適應(yīng)、在線網(wǎng)絡(luò)熱點發(fā)現(xiàn)方法及新聞推薦系統(tǒng)[J];電子學(xué)報;2010年11期
,本文編號:2127773
本文鏈接:http://www.sikaile.net/shekelunwen/shgj/2127773.html