天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 社科論文 > 法治論文 >

靜電紡絲法制備復(fù)合生物纖維膜及其性能研究

發(fā)布時間:2018-08-02 16:38
【摘要】:通過靜電紡絲技術(shù)制備復(fù)合纖維膜應(yīng)用于臨床治療中已成為現(xiàn)代醫(yī)療技術(shù)手段發(fā)展的熱門趨勢。本文通過靜電紡絲技術(shù)制備了不同的復(fù)合纖維膜并對其進行了生物和藥物傳輸性能研究。使用聚三亞甲基碳酸酯(PTMC)、明膠(Gt)和改性后的羥基磷灰石納米粒子(OA-HA)共混,電紡制備復(fù)合纖維膜作為模擬人體軟骨組織的支架。使用聚乳酸(PLLA)、改性后的羥基磷灰石納米粒子(OA-HA)和熒光分子羅丹明B(RhB)進行乳液電紡,制備核殼結(jié)構(gòu)納米纖維用于模擬藥物控釋。1.使用傳統(tǒng)的靜電紡絲手段,制備PTMC/Gt、PTMC/Gt/HA和PTMC/Gt/OA-HA復(fù)合纖維工程支架。HA作為人骨組成成分之一,其具有誘導(dǎo)骨生長、骨傳導(dǎo)等優(yōu)異性能,但研究發(fā)現(xiàn)由于HA納米粒子間存在相互作用容易發(fā)生團聚現(xiàn)象,與高分子材料進行共混電紡時分散不均勻且易于聚集成塊,導(dǎo)致纖維形貌受到極大影響,也大大降低了復(fù)合纖維支架的理化性能和生物性能。本文對HA納米粒子進行了油酸表面改性處理,提高其在高分子材料中的分散性和均勻度。利用XRD和FTIR表征手段證明HA經(jīng)表面改性后仍然保持著原有的晶體結(jié)構(gòu)和化學組成。將OA-HA納米粒子共混高分子材料進行電紡時,纖維的表面形貌得到極大改善,纖維直徑均一,表面均勻分布著OA-HA納米粒子,無塊狀團聚物。2.通過對上述三種復(fù)合纖維膜進行理化性能測試,可知,HA納米粒子和OA-HA納米粒子的加入均可提高PTMC/Gt復(fù)合纖維膜的親水性。PTMC/Gt/OA-HA復(fù)合纖維膜表現(xiàn)出更優(yōu)異的力學性能,且復(fù)合纖維中各組分仍保持著各自原有的化學性質(zhì),在復(fù)合纖維中發(fā)揮著各自優(yōu)異的理化性能。對上述三種復(fù)合纖維膜進行生物測試,PTMC/Gt復(fù)合纖維膜在初期(第一天)表現(xiàn)出較好的細胞粘附性,隨著細胞培養(yǎng)時間的延長,PTMC/Gt/HA和PTMC/Gt/OA-HA復(fù)合纖維膜則表現(xiàn)出促進細胞增殖的優(yōu)異性能。從長期組織修復(fù)的角度來看,PTMC/Gt/HA和PTMC/Gt/OA-HA復(fù)合纖維膜具有更為優(yōu)異的生物性能。3.分別采取傳統(tǒng)電紡和乳液電紡制備了載有熒光分子RhB的PLLA纖維膜。通過激光共聚焦顯微鏡觀測了熒光分子RhB在兩種纖維中的分布,實驗表明在傳統(tǒng)電紡制備的纖維中RhB分布在纖維的內(nèi)部和表面,而在乳液電紡制備的纖維中RhB僅分布在纖維的內(nèi)部,形成核層部分。說明通過乳液電紡可以制備核殼結(jié)構(gòu)纖維,并且通過激光共聚焦顯微鏡圖像可以看出每個纖維都呈現(xiàn)為核殼結(jié)構(gòu),良率極高。4.通過乳液電紡,在原有的RhB-PLLA核殼結(jié)構(gòu)纖維的基礎(chǔ)上,在殼層部分加入不同含量的OA-HA納米粒子。通過力學性能和接觸角表征,加入OA-HA納米粒子有助于提升RhB-PLLA纖維膜的力學性能和親水性能。更重要的是,OA-HA納米粒子降解速度要高于PLLA的降解速度,核層OA-HA納米粒子的降解會導(dǎo)致核殼結(jié)構(gòu)纖維殼層出現(xiàn)空缺,RhB分子通過空缺進行釋放,并且隨著殼層OA-HA納米粒子含量的增加,RhB分子的釋放速率加快。這一現(xiàn)象表明可以通過控制殼層OA-HA納米粒子的加入量控制RhB分子的釋放速率,進而實現(xiàn)藥物的控制釋放。
[Abstract]:The application of electrospun fiber to the preparation of composite fiber membranes has become a hot trend in the development of modern medical technology. In this paper, different composite fiber membranes were prepared by electrostatic spinning technology and the biological and drug transport properties were studied. Poly Sanya methyl carbonate (PTMC), gelatin (Gt) and modification were used. Hydroxyapatite nanoparticles (OA-HA) were blended and electrospun composite fiber membranes were used as scaffolds to simulate human cartilage tissue. By using poly (PLLA), modified hydroxyapatite nanoparticles (OA-HA) and fluorescent molecule Luo Danming B (RhB) were electrospun by emulsion. The preparation of nuclear shell structure nanofibers was used to simulate the use of drug controlled release.1.. PTMC/Gt, PTMC/Gt/HA and PTMC/Gt/OA-HA composite fiber engineering scaffold.HA is one of the components of human bone, which has excellent performance in inducing bone growth and bone conduction. However, it is found that the aggregation phenomenon is easy to occur because of the interaction between HA nanoparticles, and it is dispersed when blended with polymer materials. The morphology of the fiber was greatly affected and the physical and chemical properties and biological properties of the composite fiber scaffold were greatly reduced. The surface modification of oleic acid was carried out in this paper to improve the dispersion and uniformity of the HA nanoparticles in the polymer materials. The XRD and FTIR characterization methods were used to prove that the surface of HA was modified by surface modification. While the original crystal structure and chemical composition are still maintained, the surface morphology of the fiber is greatly improved when the OA-HA nanoparticle blend polymer materials are electrospun. The fiber diameter is uniform and the OA-HA nanoparticles are evenly distributed on the surface. No massive aggregate.2. has been tested for the physical and chemical properties of the three kinds of composite fiber membranes, and HA The addition of nano particles and OA-HA nanoparticles can improve the hydrophilic.PTMC/Gt/OA-HA composite fiber membrane of the PTMC/Gt composite fiber membrane with more excellent mechanical properties, and the components in the composite fibers still maintain their original chemical properties, and their excellent physical and chemical properties are played in the composite fibers. The three kinds of composite fibers are used in the composite fibers. The membrane was tested by biological test. The PTMC/Gt composite fiber membrane showed good cell adhesion at the first day (the first day). With the prolongation of cell culture time, the PTMC/Gt/HA and PTMC/Gt/OA-HA composite fibrous membrane showed excellent performance in promoting cell proliferation. From the point of view of long-term tissue repair, the composite fiber membrane of PTMC/Gt/HA and PTMC/Gt/OA-HA The PLLA fiber membrane containing fluorescent molecule RhB was prepared by traditional electrospun and emulsion electrospun with more excellent biological properties.3.. The distribution of RhB in two fibers was observed by laser confocal microscopy. The experiment showed that in the fibers prepared by the traditional electrospun fiber, RhB was distributed inside and on the surface of the fiber, and the emulsion was in the emulsion. RhB in the fibers prepared by electrospun is only distributed inside the fiber and forms the core layer. It shows that the core shell fiber can be prepared by the emulsion electrospun, and the nuclear shell structure is shown by the laser confocal microscope image. The high rate of high rate.4. is electrospun by emulsion and the base of the original RhB-PLLA core shell structure fiber. On the base, OA-HA nanoparticles with different content are added to the shell. Through the mechanical properties and contact angle, the addition of OA-HA nanoparticles helps to improve the mechanical and hydrophilic properties of the RhB-PLLA fiber membrane. More importantly, the degradation rate of the OA-HA nanoparticles is higher than that of the PLLA, and the degradation of the OA-HA nanoparticles in the nuclear layer will lead to the degradation of the nanoparticles. There is vacancy in the shell structure of the shell structure, and the RhB molecules are released through the vacancy, and the release rate of the RhB molecules is accelerated with the increase of the content of the shell OA-HA nanoparticles. This phenomenon indicates that the release rate of the RhB molecules can be controlled by controlling the addition of the shell layer OA-HA nanoparticles, and the controlled release of the drug can be realized.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ340.64

【相似文獻】

相關(guān)期刊論文 前10條

1 于翠英;;空心纖維膜的應(yīng)用[J];廣東化纖技術(shù)通訊;1980年02期

2 鄭鑫;廖桂英;仰大勇;解孝林;;有序電紡纖維膜的制備方法及在組織工程中的應(yīng)用進展[J];高分子材料科學與工程;2011年08期

3 范文娟;;光催化劑載體——羧基氟碳共聚物纖維膜的制備及耐光降解性能研究[J];表面技術(shù);2013年05期

4 殷保璞,靳向煜,顧金芝;非織造纖維膜的離子分離特性研究[J];東華大學學報(自然科學版);2001年06期

5 涂怡然;劉家海;;纖維膜系統(tǒng)中油泥沉積物組成分析[J];煉油技術(shù)與工程;2009年07期

6 黃連清;可降解的草纖維膜生產(chǎn)工藝及其特點研究初報[J];甘肅農(nóng)業(yè)大學學報;1995年04期

7 史鐵鈞;翟林峰;周玉波;;尼龍66電紡納米纖維膜的纖維分散形態(tài)和結(jié)晶性能[J];高分子材料科學與工程;2007年02期

8 李濤子;范怡平;顧春來;盧春喜;時銘顯;;纖維膜萃取分離技術(shù)的工業(yè)應(yīng)用[J];煉油技術(shù)與工程;2007年05期

9 呂升;KEG智能型纖維膜[J];紡織信息周刊;2004年23期

10 黃博能;王嬌娜;李從舉;;可調(diào)制潤濕性和力學性能的電紡纖維膜的制備與性能研究[J];高分子學報;2012年09期

相關(guān)會議論文 前10條

1 丁雅梅;王秀奎;郭萬春;袁曉燕;;明膠/低晶態(tài)磷灰石復(fù)合纖維膜的研究[A];中國復(fù)合材料學術(shù)研討會論文集[C];2005年

2 丁雅梅;王秀奎;郭萬春;袁曉燕*;;明膠/低晶態(tài)磷灰石復(fù)合纖維膜的研究[A];全國首屆青年復(fù)合材料學術(shù)交流會論文集[C];2007年

3 韓鳳選;賈瀟凌;趙瑾;趙蘊慧;樊瑜波;袁曉燕;;利用明膠促進細胞向電紡纖維膜內(nèi)部生長的研究[A];2013年全國高分子學術(shù)論文報告會論文摘要集——主題I:生物高分子與天然高分子[C];2013年

4 陳鵬程;黃小軍;徐志康;;納米纖維膜固定化酶生物反應(yīng)器的構(gòu)建及其應(yīng)用研究[A];2011年全國高分子學術(shù)論文報告會論文摘要集[C];2011年

5 張紅;袁曉燕;;乳芯電紡纖維膜對BSA的釋放研究[A];中國化學會第27屆學術(shù)年會第04分會場摘要集[C];2010年

6 陸瑩;吳志紅;李沐芳;王棟;;具有重金屬離子吸附及抗非特異性蛋白吸附功能的納米纖維膜制備及其應(yīng)用[A];2013年全國高分子學術(shù)論文報告會論文摘要集——主題K:先進纖維[C];2013年

7 李永健;王嬌娜;李從舉;;載銀離子納米纖維膜的制備與對噻吩吸附性能的研究[A];中國化學會第28屆學術(shù)年會第4分會場摘要集[C];2012年

8 王棟;李沐芳;趙青華;;具有光催化自清潔功能的聚合物納米纖維膜[A];2012年全國高分子材料科學與工程研討會學術(shù)論文集(上冊)[C];2012年

9 鐘鷺斌;苑志華;LiuQing;尹君;程曉夏;鄭煜銘;;負載鐵-錳納米纖維膜的制備及其在水處理中的應(yīng)用[A];中國化學會第29屆學術(shù)年會摘要集——第31分會:靜電紡絲技術(shù)與納米纖維[C];2014年

10 張騰;吳健;徐志康;;功能化聚酰亞胺電紡纖維膜的制備與HRP固定化研究[A];2013年全國高分子學術(shù)論文報告會論文摘要集——主題F:功能高分子[C];2013年

相關(guān)重要報紙文章 前2條

1 王景春 唐貴炎;興邦將批量生產(chǎn)納米纖維膜[N];中國化工報;2010年

2 本報記者 溫維健;低頭拉車 抬頭看路[N];中國紡織報;2014年

相關(guān)博士學位論文 前8條

1 毛雪;ZrO_2基納米纖維膜的柔性機制及其應(yīng)用研究[D];東華大學;2016年

2 陳正堅;明膠/聚己內(nèi)酯基電紡纖維膜的制備及其性能與應(yīng)用研究[D];浙江大學;2012年

3 王耀明;高溫煙氣凈化用孔梯度陶瓷纖維膜的設(shè)計、制備及特性[D];武漢理工大學;2007年

4 劉雷艮;靜電紡聚砜纖維膜的改性處理及對染料的過濾性能研究[D];蘇州大學;2013年

5 周偉濤;絲素蛋白復(fù)合納米纖維膜的制備及在污水中銅離子的吸附研究[D];江南大學;2011年

6 王建強;功能性聚合物納米纖維膜的制備及應(yīng)用[D];北京化工大學;2013年

7 車愛馥;丙烯腈共聚物納米纖維膜的表面功能化及其識別性能研究[D];浙江大學;2009年

8 費燕娜;聚乳酸/茶多酚復(fù)合納米纖維膜的制備及性能研究[D];江南大學;2013年

相關(guān)碩士學位論文 前10條

1 邰思翰;載細菌電紡纖維膜的制備及評價[D];西南交通大學;2015年

2 劉威;靜電紡絲法制備納米纖維膜及其纖溶功能化應(yīng)用研究[D];蘇州大學;2015年

3 袁利娟;靜電紡絲制備聚酰亞胺交聯(lián)納米纖維膜及其作為鋰電隔膜的應(yīng)用研究[D];北京化工大學;2015年

4 牟洪偉;靜電紡絲法制備聚酰亞胺/二氧化鈦復(fù)合納米纖維膜[D];北京化工大學;2015年

5 何雪飛;乳清濃縮蛋白纖維膜的制備及其性能研究[D];東北農(nóng)業(yè)大學;2015年

6 洪菲菲;磁響應(yīng)柔性SiO_2納米纖維膜的制備及液相分離研究[D];東華大學;2016年

7 馬浚程;改性纖維素納米纖維膜的制備及其溶菌酶吸附性能研究[D];東華大學;2016年

8 楊印景;碳管增強聚丙烯腈/尼龍6復(fù)合纖維膜在空氣過濾中的應(yīng)用[D];東華大學;2016年

9 劉波文;尼龍56納米蛛網(wǎng)纖維膜的可控制備及其空氣過濾應(yīng)用研究[D];東華大學;2016年

10 張仁忠;多級介孔TiO_2納米纖維膜的制備及其光催化降解性能研究[D];東華大學;2016年



本文編號:2160038

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shekelunwen/minzhuminquanlunwen/2160038.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶df6ba***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com