溶劑熱—熱分解法制備四氧化三鈷及其電容性能的研究
本文選題:Co_3O_4 切入點(diǎn):納米花 出處:《中南大學(xué)》2011年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:超級(jí)電容器,作為一種重要的儲(chǔ)能裝置,能夠?yàn)楝F(xiàn)代電子儀器和電動(dòng)裝置提供具有高能量密度、優(yōu)異的可逆性、良好的循環(huán)性能的能源。四氧化三鈷的理論容量為3560 F·g-1。四氧化三鉆由于其良好的電容性能和環(huán)境友好性,已成為一種主要的電容器電極材料。最近,在集流體上直接生長(zhǎng)的納米材料,已成為了一種非常具有吸引力的的電容器電極材料。這種直接生長(zhǎng)的結(jié)構(gòu)對(duì)電容性能的影響很大。每個(gè)納米結(jié)構(gòu)都與集流體直接接觸,這保障了所有納米結(jié)構(gòu)都參與電化學(xué)反應(yīng),因此提高了活性材料的利用率,也節(jié)省了混入粘結(jié)劑(高分子)和導(dǎo)電劑(炭黑或乙炔黑)以制作電極的繁瑣過(guò)程。相鄰納米結(jié)構(gòu)的間距加速了電解液在電極內(nèi)部的擴(kuò)散,這有利于減小電極內(nèi)部電阻和提高大電流下的電容性能。這些在集流體上直接生長(zhǎng)的納米材料展現(xiàn)出了比傳統(tǒng)粉末材料更加優(yōu)異的電容性能。 本課題首次通過(guò)簡(jiǎn)易的兩步法在泡沫鎳上制備了新穎的C0304納米花材料。先通過(guò)一個(gè)條件易控的溶劑熱過(guò)程,再通過(guò)熱分解過(guò)程,就可在泡沫鎳上制備出C0304納米花。這種納米材料可以直接用作超級(jí)電容器電極,而不再經(jīng)過(guò)復(fù)雜的電極制備過(guò)程。通過(guò)XRD、SEM和TEM等檢測(cè)方法研究了產(chǎn)物的物相、形貌。結(jié)果表明C0304納米花是多孔的。納米花的孔徑和納米花之間的間距可以分別通過(guò)控制熱分解和溶劑熱條件加以調(diào)控。本文考察了孔徑和C0304納米花的數(shù)量對(duì)C0304材料電化學(xué)性能的影響。論文通過(guò)不同掃速下的循環(huán)伏安,不同電流密度下的恒流充放電等電化學(xué)測(cè)試方法探討了C0304納米花在6.0 mol·L-1 KOH溶液中的電容性能。結(jié)果表明C0304納米花電化學(xué)性能非常優(yōu)異:在電流密度0.2 A·g-1下可達(dá)1936.7 F·g-1。即使在3 A·g-1的大電流密度下,1000次充放電循環(huán)后C0304納米花的容量仍保持78.2%。這種在泡沫鎳上生長(zhǎng)的C0304納米花電極材料,可以大面積制備,并且具有優(yōu)異的電化學(xué)性能,在電容器應(yīng)用中很有前景。
[Abstract]:Super capacitor as an energy storage device, can provide high energy density for modern electronic devices and electric device, excellent reversibility and good cycle performance. The energy theory capacity of four oxidation three cobalt was 3560 F - g-1. four oxidation three drilling due to its good capacitance performance and environment friendly that has become a main capacitor electrode material. Recently, in the nano material collector direct growth, has become a very attractive capacitor electrode material. This greatly influence the structure directly on the growth of capacitance performance. Each nanostructures are in direct contact with the collector, the security all the nano structures are involved in the electrochemical reaction, so the utilization of the active material is improved, but also saves mixed binder (polymer) and conductive agent (carbon black and acetylene black) with complicated production process adjacent electrodes. The spacing between nanomaterials accelerates the diffusion of electrolyte in the electrode, which helps to reduce the internal resistance of the electrode and improve the capacitive performance under high current. These nano materials directly grown on the collector show better capacitance performance than the traditional powder materials.
For the first time through the two step simple on nickel foam prepared C0304 nano materials. The first novel flower by solvent thermal process is easy to control a condition, and then through the thermal decomposition process, can be prepared by C0304 nano flowers on nickel foam. The nanometer material can be directly used as supercapacitor electrode. Instead of through the electrode preparation process is complicated. The XRD morphology of SEM and TEM methods for detection of the product phase. The results showed that C0304 nano flowers are porous. The spacing between the aperture and the nano flower flower can be respectively controlled by nano thermal decomposition and solvent thermal conditions were investigated to control. Influence of the number of aperture and C0304 nano flowers on the electrochemical properties of C0304 materials. Through the different cyclic voltammetric velocities, different current densities, constant current charge discharge electrochemical method of C0304 nano flowers in 6 mol L-1 in KOH solution. The results show that the capacitance performance of C0304 nano flowers very excellent electrochemical performance: in the current density of 0.2 A - g-1 up to 1936.7 F - g-1. even at high current density of 3 A - g-1, C0304 - 1000 cycles C0304 nanoflower capacity still maintain this growth in global 78.2%. foam nickel flowers on the electrode material can be prepared by a large area, and has excellent electrochemical performance, the capacitor applications are promising.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TM53
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 張治安,鄧梅根,胡永達(dá),楊邦朝;電化學(xué)電容器的特點(diǎn)及應(yīng)用[J];電子元件與材料;2003年11期
2 張衛(wèi)民,孫思修,俞海云,宋新宇;水熱-固相熱解法制備不同形貌的四氧化三鈷納米微粉[J];高等學(xué);瘜W(xué)學(xué)報(bào);2003年12期
3 張衛(wèi)民;張玉;董光明;孫中溪;;水熱-熱解法制備具有一維結(jié)構(gòu)的Co_3O_4多晶[J];高等學(xué);瘜W(xué)學(xué)報(bào);2006年10期
4 ;Synthesis of three-dimensional hierarchical cobalt hydroxide microstructures[J];Science China(Chemistry);2010年04期
5 張治安,楊邦朝,鄧梅根,胡永達(dá);超級(jí)電容器氧化錳電極材料的研究進(jìn)展[J];無(wú)機(jī)材料學(xué)報(bào);2005年03期
6 張衛(wèi)民,宋新宇,李大枝,孫思修;水熱-熱解法制備具有一維納米結(jié)構(gòu)的γ-Mn_2O_3[J];無(wú)機(jī)化學(xué)學(xué)報(bào);2004年06期
相關(guān)博士學(xué)位論文 前1條
1 張治安;基于氧化錳和炭材料的超級(jí)電容器研究[D];電子科技大學(xué);2005年
,本文編號(hào):1603594
本文鏈接:http://www.sikaile.net/shekelunwen/minzhuminquanlunwen/1603594.html