天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于磷脂組裝體的生物膜及雜化生物材料的制備

發(fā)布時(shí)間:2021-03-16 12:26
  細(xì)胞是已知生命體結(jié)構(gòu)和功能的基本單元。其外部為細(xì)胞膜,內(nèi)部含有細(xì)胞質(zhì)和細(xì)胞器。在合成生物學(xué)中,人造細(xì)胞可用于模擬細(xì)胞的一種或多種基本功能。由于細(xì)胞的復(fù)雜性,人們只構(gòu)建出具有某種特定功能的人造細(xì)胞,迄今還未構(gòu)建出具有所有細(xì)胞功能的人造細(xì)胞。細(xì)胞中最重要的組成部分是生物膜,它決定著細(xì)胞的形狀、物質(zhì)的轉(zhuǎn)運(yùn)以及細(xì)胞內(nèi)外信號(hào)的傳遞。針對(duì)目前細(xì)胞膜構(gòu)建中存在的問(wèn)題,本文開(kāi)展了以下研究:1)利用面對(duì)面電極體系研究尺寸可控的巨型囊泡的電形成過(guò)程;2)電形成過(guò)程中電場(chǎng)方向?qū)π纬筛咔婺つP土字艿挠绊?3)利用調(diào)制電場(chǎng)制備和真核細(xì)胞結(jié)構(gòu)類似的雙層磷脂囊泡;4)碳納米管和磷脂的結(jié)合形成生物相容的螺旋結(jié)構(gòu),作為未來(lái)用于先進(jìn)藥物遞送的微型機(jī)器人。首先采用電形成的方法制備了巨型囊泡(GUVs)。利用等離子體表面處理的氧化銦錫電極,通過(guò)響應(yīng)曲面法考察了不同因素(電壓、頻率和溫度)對(duì)囊泡尺寸的影響。同時(shí)探討了具有不同電性(中性、正電性和負(fù)電性)的磷脂對(duì)GUVs的形成及尺寸的影響。研究表明,GUVs可以在較寬的電壓、頻率和溫度下形成。但是不同的因素對(duì)GUVs尺寸的影響不一樣,在1-6V范圍內(nèi),GUVs直徑隨著電壓的升... 

【文章來(lái)源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校

【文章頁(yè)數(shù)】:135 頁(yè)

【學(xué)位級(jí)別】:博士

【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
    1.1 Background, objective and significance of the study
    1.2 The hydrophobic effect of amphiphilic mo lecules
    1.3 Introduction to self-assembly of phospholipids
        1.3.1 Phospholipid self-assembly in aqueous solution
        1.3.2 Phospholipid self-assembly on solid substrate
    1.4 Methods for construction of phospholipid self-assembly
        1.4.1 Construction of spherical phospholipid assembly
        1.4.2 Construction of non spherical phospholipid assembly
        1.4.3 Construction of multi vesicles assemblies
        1.4.4 Construction of phospholipid self-assembly on solid substrate
    1.5 Main research contents of this subject
Chapter 2. Materials and Methods
    2.1 Main raw materials and reagents
    2.2 Experimental instrument
    2.3 Materials characterization
        2.3.1 Phospholipid charachterization
        2.3.2 Carbon nanotubes characterization
    2.4 Experimental
        2.4.1 Formation of GUVs assembly using electroformation methods
        2.4.2 Electroformation of lipid tubes using film paralleling electric field
        2.4.3 Electroformation of double vesicles using AM electric field
        2.4.4 Preparation of phospholipid-CNTs hybrids
    2.5 Characterization methods
        2.5.1 Fluorescent microscopy test methods
        2.5.2 Confocal laser scanning microscopy
        2.5.3 Scanning electron microscopy
        2.5.4 Diameter determination method
    2.6 Mathematical methods and simulation tools
        2.6.1 Design of experiments
        2.6.2 COMSOL simulation
        2.6.3 Solution of Laplace equation for AM electric field on semi spherical shell
Chapter 3. Self-assembly of giant vesicles with controlled size usingelectroformation
    3.1 Introduction
    3.2 Formation of GUVs at different electroformation parameters
        3.2.1 Influence of Electroformation time on GUVs size and PolydispersityIndex
        3.2.2 Electroformation of GUVs at different electric potentials
        3.2.3 Electroformation of GUVs at different frequencies
        3.2.4 Electroformation of GUVs at different temperatures
    3.3 Matrix Design and models building
    3.4 Models validation
    3.5 Effect of individual parameters on the formation of GUVs
        3.5.1 Effect of electric potential
        3.5.2 Effect of frequency
        3.5.3 Effect of temperature
        3.5.4 Effect of phospholipid composition
    3.6 Effect of interaction between parameters
        3.6.1 Interaction between electrical potential-frequency
        3.6.2 Interaction between temperature-frequency
        3.6.3 Interaction between temperature-electric potential
    3.7 Summary
Chapter 4. Self-assembly of tubular biomembrane and double vesicles usingelectroformation
    4.1. Introduction
    4.2 Electroformation of lipid microtubules
        4.2.1 Description of the experimental device
        4.2.2 Formation of phospholipid tubes
    4.3 Parameters influence the formation of phospholipid tubules
        4.3.1 Influence of electric field strength
        4.3.2 Influence of electric field direction on the formation of tubes
    4.4 Mechanism of lipid tubes formation
    4.5 Vesicles electroformation under different wave function
    4.6 Validation of the formation of double vesicles
    4.7 Parameters influence the formation of doubles vesicles
        4.7.1 Effect of critical time
        4.7.2 Effect of modulated and carrier frequencies
        4.7.3 Effect of amplitude depth
    4.8 Mechanism of double vesicle formation
    4.9 Theoretical aspect of domes elongation into tubes
        4.9.1 Calculation of the pulling force under AM electric field
        4.9.2 Calculation of the critical force under AM electric field
    4.10 Summary
Chapter 5 Self-assembly of phospholipid-CNTs hybrids helical structures
    5.1 Introduction
    5.2 Size distribution of CNT
    5.3 Self-assembly of neutral phospholipids on long CNTs
    5.4 Self-assembly of charged phospholipid on CNTs
        5.4.1 Self-assembly of charged phospholipid on short CNTs
        5.4.2 Self-assembly of charged phospholipid on medium CNTs
        5.4.3 Self-assembly of charged phospholipid on long CNTs
    5.5 Formation mechanism of phospholipid@CNTs helical structures
    5.6 Effect of phospholipid/CNTs mass ratio on the formation of springs
    5.7 Summary
Conclusion
Innovative points of this thesis
Perspectives
References
List of publications
Acknowledgement
Resume



本文編號(hào):3086035

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/projectlw/hxgylw/3086035.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶08ace***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com