蒸汽發(fā)生器水位自抗擾控制方法研究
發(fā)布時(shí)間:2022-01-16 10:15
U型管蒸汽發(fā)生器(UTSG)是壓水堆(PWR)中最常見的部件之一,所以需要對(duì)U型管蒸汽發(fā)生器的性能進(jìn)行精確的仿真,以分析各種設(shè)計(jì)和運(yùn)行參數(shù)對(duì)核電站性能的影響。UTSG是一類非線性、不確定、非最小相位和時(shí)滯系統(tǒng)。進(jìn)水溫度和其他不確定因素對(duì)UTSG的控制提出了很大的挑戰(zhàn)。針對(duì)上述問題,本文分析了兩類系統(tǒng)(線性系統(tǒng)和非線性系統(tǒng)),對(duì)不同區(qū)域和參數(shù)的U型管蒸汽發(fā)生器進(jìn)行了數(shù)學(xué)建模。其中一個(gè)模型將所有行為線性化,使用6個(gè)變量;另一個(gè)模型包括數(shù)學(xué)模型中的所有非線性變量,使用9個(gè)變量。本研究主要有兩個(gè)目的。第一:利用MATLAB/SIMULINK對(duì)UTSG的兩個(gè)系統(tǒng)進(jìn)行建模,并研究這些系統(tǒng)在穩(wěn)態(tài)和瞬態(tài)條件下的行為。第二部分:對(duì)UTSG數(shù)學(xué)模型的水位系統(tǒng)進(jìn)行檢測和控制設(shè)計(jì)。UTSG對(duì)瞬態(tài)條件(擾動(dòng)如:給水質(zhì)量流量,蒸汽壓力和溫度)的響應(yīng)在蒸汽發(fā)生器安全評(píng)估中起關(guān)鍵作用。本文討論了所有這些響應(yīng)并且得出了結(jié)果。提出了自抗擾控制技術(shù)(ADRC)用于控制目的,解決水位跟蹤問題,并在一些變化過程中主動(dòng)抑制固有動(dòng)態(tài)和外部擾動(dòng)基于ADRC。在MATLAB/SIMULINK環(huán)境下實(shí)現(xiàn)了自抗擾控制器(ADRC)和傳統(tǒng)控...
【文章來源】:華北電力大學(xué)(北京)北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:69 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Motivation Work
1.3 Research Objectives
1.3.1 Three case studies for nine variables SG model:
1.3.2 Three perturbations for six variables SG model:
1.3.3 These simulations are also used to satisfy the following objectives:
1.4 Thesis Organization
Chapter 2 Literature Review
2.1 Steam Generator Level Control
2.2 Steam Generator Level Control Techniques in the Literature
2.2.1 Gain scheduled controller and H∞ control techniques
2.2.2 Auto-uned PID controller using a MPC
2.2.3 Linear Quadratic Regulator(LQR),Fuzzy-PID and Neuro-Fuzzy basedcontrollers
2.2.4 Model Predictive Control and sliding mode control Techniques
2.3 History of ADRC
Chapter 3 Methodology
3.1 MATHEMATICAL MODELS of a STEAM GENERATOR
3.1.1 UTSG using sixth order linear system
3.2 ADRC Controller
Chapter 4 Simulation
4.1 Setting up the simulation
4.2 Models Simulation
4.2.1 Linearization model Simulation
4.3 Non-linear model Simulation
Chapter 5 Results and Discussion
5.1 The results
5.1.1 Nine variables non-linear SG model
5.1.2 Six variables linear SG model
5.1.3 ADRC controller for non-linear system
5.2 The discussion
5.2.1 Model discussion
5.2.2 ADRC with PID controller for non-linear system
Chapter 6 Conclusions and Future Work
6.1 Conclusions
6.2 Future work
REFERENCES
Nomenclature
Papers published during the master's degree
Acknowledgements
本文編號(hào):3592456
【文章來源】:華北電力大學(xué)(北京)北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:69 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Motivation Work
1.3 Research Objectives
1.3.1 Three case studies for nine variables SG model:
1.3.2 Three perturbations for six variables SG model:
1.3.3 These simulations are also used to satisfy the following objectives:
1.4 Thesis Organization
Chapter 2 Literature Review
2.1 Steam Generator Level Control
2.2 Steam Generator Level Control Techniques in the Literature
2.2.1 Gain scheduled controller and H∞ control techniques
2.2.2 Auto-uned PID controller using a MPC
2.2.3 Linear Quadratic Regulator(LQR),Fuzzy-PID and Neuro-Fuzzy basedcontrollers
2.2.4 Model Predictive Control and sliding mode control Techniques
2.3 History of ADRC
Chapter 3 Methodology
3.1 MATHEMATICAL MODELS of a STEAM GENERATOR
3.1.1 UTSG using sixth order linear system
3.2 ADRC Controller
Chapter 4 Simulation
4.1 Setting up the simulation
4.2 Models Simulation
4.2.1 Linearization model Simulation
4.3 Non-linear model Simulation
Chapter 5 Results and Discussion
5.1 The results
5.1.1 Nine variables non-linear SG model
5.1.2 Six variables linear SG model
5.1.3 ADRC controller for non-linear system
5.2 The discussion
5.2.1 Model discussion
5.2.2 ADRC with PID controller for non-linear system
Chapter 6 Conclusions and Future Work
6.1 Conclusions
6.2 Future work
REFERENCES
Nomenclature
Papers published during the master's degree
Acknowledgements
本文編號(hào):3592456
本文鏈接:http://www.sikaile.net/projectlw/hkxlw/3592456.html
最近更新
教材專著