天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于肌電信號(hào)的前臂假肢動(dòng)作識(shí)別研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-08-19 15:25
【摘要】:前臂殘疾者因?yàn)榍氨酆褪植康娜笔?身體功能和勞動(dòng)能力受到極大影響。而前臂假肢通過(guò)工程方法為殘疾者提供了人工假體,部分恢復(fù)了缺少的肢體功能。近年來(lái),由于各項(xiàng)科學(xué)技術(shù)的發(fā)展,越來(lái)越多的商業(yè)精密前臂假肢被投放市場(chǎng),而市場(chǎng)上的前臂假肢也變得越來(lái)越穩(wěn)定,甚至出現(xiàn)了可以直接控制單根手指的假肢產(chǎn)品。這些假肢通過(guò)電極界面采集人體的表面肌肉電信號(hào)(surface electromyography,s EMG),處理后形成控制指令,實(shí)現(xiàn)殘疾人通過(guò)殘肢發(fā)出具體動(dòng)作的肌肉電信號(hào)指令,控制高精密假肢完成具體動(dòng)作。但目前市場(chǎng)上的精密假肢普遍價(jià)格較高,而實(shí)驗(yàn)室肌電處理方法主要測(cè)試于計(jì)算機(jī)仿真平臺(tái)上,離實(shí)際使用仍有一定差距。為解決上述問(wèn)題,本文嘗試設(shè)計(jì)了一套基于開(kāi)源嵌入式平臺(tái)的智能假肢肌電信號(hào)采集與動(dòng)作識(shí)別系統(tǒng),可實(shí)現(xiàn)對(duì)人體前臂表面肌電信號(hào)的采集、處理并產(chǎn)生控制信號(hào)用于高精度智能假肢。本設(shè)計(jì)主要包括以下方面:1.根據(jù)人體肌肉運(yùn)動(dòng)單元和肌電信號(hào)產(chǎn)生原理,研究了目前肌電信號(hào)采集和預(yù)處理領(lǐng)域的相關(guān)方案。設(shè)計(jì)了表面肌電信號(hào)采集系統(tǒng)、電極位置和數(shù)字信號(hào)預(yù)處理方法。2.以模式識(shí)別技術(shù)為基本原理,介紹了表面肌電信號(hào)處理中特征提取的相關(guān)特征模型和求取方法,分析對(duì)比了一種綜合時(shí)域和自回歸特征的信號(hào)特征提取方法與另一種結(jié)合時(shí)域與功率譜描述的特征提取方法。同時(shí)介紹了使用的降維算法和分類(lèi)器的數(shù)學(xué)原理及實(shí)現(xiàn)方法。通過(guò)實(shí)驗(yàn)分析了各方法的優(yōu)劣。3.在已有方法基礎(chǔ)上結(jié)合有限狀態(tài)機(jī)和模式識(shí)別方法,提出了一套適用于嵌入式系統(tǒng)的肌電信號(hào)處理與模式識(shí)別新方法:FSM-TSD,該方法對(duì)大量的分類(lèi)問(wèn)題按不同狀態(tài)進(jìn)行了拆分,降低了分類(lèi)難度,提高了分類(lèi)準(zhǔn)確率。4.基于商品化的肌電假肢控制相關(guān)要求,提出了一套肌電信號(hào)采集與手勢(shì)識(shí)別系統(tǒng)的設(shè)計(jì)方案,達(dá)到對(duì)采集性能與市場(chǎng)參數(shù)的平衡。闡述了各種算法在資源有限的嵌入式微控制器平臺(tái)上的實(shí)現(xiàn)方法。使用搭建的嵌入式平臺(tái)進(jìn)行肌電信號(hào)采集與動(dòng)作識(shí)別功能的實(shí)驗(yàn)。
[Abstract]:The body and labor ability of the forearm disabled is greatly affected by the loss of the forearm and the hand. The forearm prosthesis provides artificial prosthesis for the disabled by engineering, partly restoring the missing limb function. In recent years, due to the development of various science and technology, more and more commercial precision forearm prostheses have been put on the market, and the forearm prostheses on the market have become more and more stable. These prostheses collect surface electromyographys (EMG),) signals of human body through electrode interface to form control instructions, and realize that disabled people can send out specific EMG signals through residual limbs, and control the high-precision prosthesis to complete the specific actions. However, the price of precision prosthesis in the market is generally high, and the method of electromyography in laboratory is mainly tested on the computer simulation platform, which is still far from the actual use. In order to solve the above problems, this paper attempts to design a set of intelligent EMG signal acquisition and motion recognition system based on open source embedded platform, which can realize the acquisition of EMG signal on the forearm surface of human body. Process and generate control signals for high-precision intelligent prostheses. This design mainly includes the following aspects: 1. 1. According to the principle of human muscle motility unit and EMG signal generation, the related schemes in the field of EMG signal acquisition and preprocessing are studied. The surface EMG signal acquisition system, electrode position and digital signal preprocessing method. 2. 2. Based on the principle of pattern recognition, the feature models and methods of feature extraction in surface electromyography (EMG) processing are introduced. A signal feature extraction method combining time domain and autoregressive features is analyzed and compared with another feature extraction method combining time domain and power spectrum description. At the same time, the mathematical principle and realization method of dimensionality reduction algorithm and classifier are introduced. The advantages and disadvantages of each method are analyzed by experiments. On the basis of existing methods, a new EMG signal processing and pattern recognition method named: FSM-TSDs is proposed, which combines finite state machine and pattern recognition method for embedded systems. This method splits a large number of classification problems according to different states. It reduces the difficulty of classification and improves the accuracy of classification. 4. Based on the commercial requirements of myoelectric prosthesis control, a design scheme of EMG signal acquisition and gesture recognition system is proposed to achieve the balance between acquisition performance and market parameters. The implementation of various algorithms on the platform of embedded microcontroller with limited resources is described. The embedded platform is used to carry out the experiment of EMG signal acquisition and motion recognition.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:R496;TN911.7

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 丁其川;熊安斌;趙新剛;韓建達(dá);;基于表面肌電的運(yùn)動(dòng)意圖識(shí)別方法研究及應(yīng)用綜述[J];自動(dòng)化學(xué)報(bào);2016年01期

2 彭亮;侯增廣;王衛(wèi)群;;康復(fù)機(jī)器人的同步主動(dòng)交互控制與實(shí)現(xiàn)[J];自動(dòng)化學(xué)報(bào);2015年11期

3 張良清;周慧;楊琳;黃劍平;楊萬(wàn)章;李光林;;目標(biāo)肌肉神經(jīng)分布重建大鼠模型及低頻電刺激的效果研究[J];中國(guó)康復(fù)醫(yī)學(xué)雜志;2015年01期

4 王濤;侯文生;吳小鷹;萬(wàn)小萍;鄭小林;;用于肌電假肢手控制的表面肌電雙線性模型分析[J];儀器儀表學(xué)報(bào);2014年08期

5 趙燕潮;;中國(guó)殘聯(lián)發(fā)布我國(guó)最新殘疾人口數(shù)據(jù)[J];殘疾人研究;2012年01期

6 游淼;鄒國(guó)棟;林婉華;余龍;;基于肌動(dòng)圖與肌電圖信號(hào)的假肢控制系統(tǒng)的研究[J];北京生物醫(yī)學(xué)工程;2011年06期

7 賈曉楓,陳統(tǒng)一,陳中偉,張鍵,張曉文,斯揚(yáng),胡天培,高忠華,楊煜普;中國(guó)首例人體殘肢神經(jīng)信息控制電子假肢實(shí)驗(yàn)研究快報(bào)[J];中華物理醫(yī)學(xué)與康復(fù)雜志;2004年01期

相關(guān)會(huì)議論文 前1條

1 羅永昭;孫為;;國(guó)內(nèi)外現(xiàn)代實(shí)用假肢的進(jìn)展和應(yīng)用[A];第20屆中國(guó)康協(xié)肢殘康復(fù)學(xué)術(shù)年會(huì)論文選集[C];2011年

相關(guān)碩士學(xué)位論文 前1條

1 張志勇;肌電信號(hào)采集與肌電假肢控制的研究[D];哈爾濱工業(yè)大學(xué);2010年

,

本文編號(hào):2192071

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/linchuangyixuelunwen/2192071.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)89a9e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com