天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于CNN和SVDD的DDoS攻擊檢測(cè)研究

發(fā)布時(shí)間:2022-04-23 20:00
  互聯(lián)網(wǎng)技術(shù)的飛速發(fā)展已在諸多方面影響甚至改變著人類的生活方式,便利了人們的生活。雖然互聯(lián)網(wǎng)使我們的生活更加方便,但其脆弱性和通過互聯(lián)網(wǎng)進(jìn)行通信的信息量為對(duì)手在基礎(chǔ)架構(gòu)內(nèi)執(zhí)行惡意活動(dòng)的機(jī)會(huì)。任何連接到公共互聯(lián)網(wǎng)甚至私人網(wǎng)絡(luò)的主機(jī),都會(huì)不斷受到潛在攻擊的威脅。網(wǎng)絡(luò)安全已經(jīng)成為企業(yè)和組織考慮的一個(gè)非常重要的因素。然而,互聯(lián)網(wǎng)的脆弱性以及其龐大的通信信息量,使得攻擊者有機(jī)會(huì)在其基礎(chǔ)架構(gòu)內(nèi)進(jìn)行惡意攻擊,從而帶來嚴(yán)重的后果。DDoS攻擊是一種非常典型的網(wǎng)絡(luò)攻擊,DDOS攻擊會(huì)在通往目標(biāo)系統(tǒng)的路徑上阻塞很多資源,例如CPU功率、帶寬、內(nèi)存、處理時(shí)間等等。任何DDOS防御機(jī)制的主要目標(biāo)都是盡快檢測(cè)DDOS攻擊,并使其在盡可能靠近其來源時(shí)就被發(fā)現(xiàn)。卷積神經(jīng)網(wǎng)絡(luò)(CNN)在任何應(yīng)用領(lǐng)域的應(yīng)用都包括許多步驟:數(shù)據(jù)的集成和預(yù)處理,機(jī)器學(xué)習(xí)模型的訓(xùn)練,以及基于在訓(xùn)練模型進(jìn)行預(yù)測(cè)和決策。當(dāng)應(yīng)用于各種分類問題時(shí),基于深度學(xué)習(xí)的方法優(yōu)于現(xiàn)有的機(jī)器學(xué)習(xí)技術(shù)。他們通過剔除神經(jīng)網(wǎng)絡(luò)的非線性,以無監(jiān)督的方式降低高維數(shù)據(jù)集的特征提取維數(shù),并將深度學(xué)習(xí)應(yīng)用于各種入侵檢測(cè)系統(tǒng)的實(shí)施。深度學(xué)習(xí)是一個(gè)強(qiáng)大的工具,可以提供識(shí)別安全漏洞的... 

【文章頁(yè)數(shù)】:62 頁(yè)

【學(xué)位級(jí)別】:碩士

【文章目錄】:
摘要
Abstract
1 Introduction
    1.1 Introduction and background
    1.2 Related works
    1.3 Motivation behind the Project
    1.4 Scope and overview of the document
2 DDo S Attack
    2.1 DDo S Attacks Classification and Architectures
        2.1.1 Classification
        2.1.2 DDo S attacks architectures
        2.1.3 DDo S Strategy
    2.2 DDo S Defense,Detection and Mitigation
        2.2.1 DDo S attacks architectures
        2.2.2 DDo S Detection and Mitigation Strategies
    2.3 Deep Learning Approach in DDo S detection
3 DDo S attack detection based on CNN and SVDD approach
    3.1 Experiment Environment
    3.2 Data Preparation and data processing
        3.2.1 The Data Set
        3.2.2 Methodology
        3.2.3 Packets feature processing
    3.3 DDo S attack defense based on Deep Learning
        3.3.1 Convolutional neural network
        3.3.2 Support vector data description(SVDD)
    3.4 The proposed CNN-SVDD approach
        3.4.1 CNN feature extraction
        3.4.2 SVDD Classification
    3.5 Experiment results
    3.6 Summary
4 Transfer Learning on DDo S attack detection
    4.1 Transfer Learning Approach
        4.1.1 Transfer Learning Technique
        4.1.2 NSL-KDD Dataset
    4.2 Experimental setting
    4.3 Experiment Result on Transfer Learning Method
    4.4 Summary
5 Conclusion and Future work
    5.1 Conclusion
    5.2 Future Development
Acknowledgement
References
Achievement


【參考文獻(xiàn)】:
期刊論文
[1]基于核學(xué)習(xí)的入侵檢測(cè)改進(jìn)方法[J]. 周澤尋,蔣蕓,明利特,王明芳,謝國(guó)城,李想.  計(jì)算機(jī)工程. 2012(14)
[2]基于改進(jìn)小波分析的DDoS攻擊檢測(cè)方法[J]. 呂良福,張加萬,張丹.  計(jì)算機(jī)工程. 2010(06)
[3]DDoS攻擊的全局異常相關(guān)檢測(cè)方法[J]. 李宗林,胡光岷,楊丹,姚興苗.  計(jì)算機(jī)應(yīng)用. 2009(11)
[4]基于支持向量數(shù)據(jù)描述的異常檢測(cè)方法[J]. 楊敏,張煥國(guó),傅建明,羅敏.  計(jì)算機(jī)工程. 2005(03)



本文編號(hào):3647883

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/3647883.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶adba5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com