檢測磺酸類農(nóng)藥殘留和生物硫醇傳感器的構(gòu)建
發(fā)布時間:2021-10-06 19:13
納米材料,與傳統(tǒng)的塊狀材料相比,具有獨特的光學(xué)性質(zhì)。例如,半導(dǎo)體量子點,與傳統(tǒng)的熒光染料相比,具有很高的熒光量子產(chǎn)率;貴金屬金銀納米粒子則具有極佳的熒光猝滅能力。這些材料被廣泛的用于環(huán)境污染物和生物分子的檢測應(yīng)用。微球,作為商業(yè)化懸浮陣列芯片平臺的核心材料,在高通量生物檢測領(lǐng)域展現(xiàn)出優(yōu)越的性能,該技術(shù)不僅檢測快速,樣品用量少,而且自動化程度高。然而,利用微球和納米材料的結(jié)合來開發(fā)更高檢測靈敏度的檢測方法卻鮮有報道。在本研究中,我們集中在利用微球,半導(dǎo)體量子點和貴金屬金納米粒子構(gòu)建納米復(fù)合材料體系以實現(xiàn)對包括生物硫醇和農(nóng)藥的檢測。在生物硫醇的檢測中,我們開發(fā)的基于流式方法的探針體系以熒光打開的方式實現(xiàn)了對生物硫醇的檢測,檢測靈敏度達(dá)到0.1μmol/L。此外,農(nóng)藥和重金屬離子也被用來檢驗我們開發(fā)的納米材料復(fù)合體系檢測的一般性。實驗結(jié)果表明,通過改變納米材料表面的修飾分子,我們開發(fā)的檢測平臺可以用來檢測不同的目標(biāo)物。實驗具體內(nèi)容如下:1.在這一部分,我們首次開發(fā)了基于熒光打開模式的含硫農(nóng)藥的檢測。該探針的構(gòu)建首先是在聚苯乙烯微球表面通過靜電吸附作用修飾上金納米粒子,然后再同樣通過靜電吸附作...
【文章來源】:華中農(nóng)業(yè)大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁數(shù)】:128 頁
【學(xué)位級別】:博士
【文章目錄】:
LIST OF ABBRVIATIONS
摘要
Abstract
1.CHAPTER 1 (Background)
1.1.Introduction
1.1.1.Research background and problem
1.2.Review of literature
1.2.1.Pesticide residues
1.2.2.Biothiols(BT)
1.3.Methods
1.3.1.The detection methods for sulfur pesticide residues
1.3.1.1.The SERS method for pesticide residues detection
1.3.2.The detection methods for biothiols
1.3.2.1.The UV-HPLC,RP-HPLC and UHPLC detection methods for biothiols
1.3.2.2.The colorimetric detection methods for biothiols
1.3.2.3.The fluorescence detection methods for biothiols
1.4.References
2.CHAPTER 2:Sensor for sulfur pesticide residues detection by turn on fluorescence method
2.1.Introduction
2.1.1.The aim of this chapter
2.2.Review of literature
2.3.Materials and Methods
2.3.1.Materials and Reagents
2.3.1.1.Equipment
2.3.2.Methods
2.3.2.1.Polystyrene microbeads synthesis and sulfonation
2.3.2.2.Gold nanoparticles synthesis
2.3.2.3.Probe preparation
2.3.2.3.1.Test rhodamine B(RhB)with Cys and Thiram
2.3.2.3.2.Using Au NPs as a quencher for RhB to detect Cys and Thiram
2.3.2.3.3.Use PS~+ (200 nm)beads as a carrier for prepare probe to detect Cys and Thiram
2.3.2.3.3.1.Preparing probe PS+ (200 nm) @Au/RhB for Thiram detection
2.3.2.3.3.2.Detect the best time for the detection of Thiram
2.3.2.3.3.3.Detect the sensitivity for the probe
2.3.2.3.3.4.Detect the selectivity for the probe
2.3.2.3.4.Preparing the probe by use PS~+2 μm
2.3.2.3.4.1.Detect the best time for the detection of Thiram
2.3.2.3.4.2.Detect the sensitivity for the probe
2.3.2.3.4.3.Detect the selectivity for the probe
2.3.2.3.5.Detect Thiram in spiked sample
2.4.Results and Discussion
2.4.1.Characterization of the procedure to find the suitable preparation for the probe to detect Thiram
2.4.2.Select the best time for the Thiram detection with probe
2.4.3.Characterization of probe preparation by PS+2 μm beads
2.4.4.The comparison between using PS~+2 μm beads and PS~+200 nm beads for preparing probe
2.4.5.Detect the probe sensitivity for Thiram detection
2.4.6.Detect the probe selectivity for Thiram detection
2.4.7.Recovery rate for each spiked sample
2.5.Conclusion
2.6.References
3.CHAPTER 3:Sensor for biothiols detection by turn on fluorescence method
3.1.Introduction
3.1.1.The aim of this chapter
3.2.Review of literature
3.3.Materials and Methods
3.3.1.Materials and Reagents
3.3.1.1.Equipment
3.3.2.Methods
3.3.2.1.Synthesis of Polystyrene microbeads and sulfonation
3.3.2.2.Gold nanoparticles synthesis
3.3.2.3.The synthesis procedure of Biothiol probe(PS/QDs/Au)
3.3.2.4.Flow cytometry-based detection of biothiols by(PS/QDs/Au)probe
3.3.2.5.Cell incubation and imaging
3.3.2.6.MTT Assay
3.3.2.7.Characterization
3.3.2.8.Detect Cys in Human urine
3.4.Results and Discussion
3.4.1.Synthesis of biothiols probe and characterization
3.4.2.Effect of pH and reaction kinetics for the biothiols detection
3.4.3.Flow cytometry-based biothiols detection
3.4.4.Biothiols detection in serum
3.4.5.Biothiols detection in human urine
2.5.Conclusion
3.6.References
4.CHAPTER 4:Sensors for sulfur pesticide residues and/or biothiols detection
4.1.Introduction
4.1.1.The aim of this chapter
4.2.Review
4.3.Materials and Methods
4.3.1.Materials and Reagents
4.3.1.1.Equipment
4.3.2.Methods
4.3.2.1.Synthesis of Polystyrene(2μm)microbeads and sulfonation
4.3.2.2.Gold nanoparticles synthesis
4.3.2.3.The synthesis procedure for PS/QDs/PDAMAC/SiO2-MPA beads
4.3.2.4.The synthesis procedure for PS/QDs(Highly Fluorescent)
4.3.2.5.The synthesis procedure for dual fluorescent probe
4.3.2.6.Preparation of Magnetic Beads and the pDA Coating
4.3.2.6.1.Preparing probe by using magnetic micro beads3 μm(MB)
4.3.2.6.2.Preparing probe by using magnetic micro beads4 μm(MB)
4.3.2.7.Detect Thiram by using PQPG probe
4.3.2.7.1.The effect of different ions on the fluorescence signal for PQPG probe after turned on by used Cys
4.3.2.8.Detect biothiols by colorimetric method
4.3.2.9.Turn on fluorescence method to detect Cys by using CTAB-QDs
4.3.2.9.1.Preparation of CTAB-QDs(Cetyltrimethylammonium bromide-QDs)
4.3.2.10.Detect Thiram by use PMM(Plasmonic Magnetic Microbeads)and SERS method
4.3.2.10.1.Preparation of13 nm Au seeds decorated by magnetic PS beads with dopamine coating
4.3.2.10.1.1.Preparation of Au seeds(13 nm)solution
4.3.2.10.2.Ag nano-island growth on dopamine shell
4.3.3.10.2.1.Preparation of glucose alkaline solution
4.3.2.10.2.2.Preparation of silver nitrate ammonia solution
4.3.2.10.3.Select the best PMM structure to detect Thiram by use SERS method
4.3.2.11.The steps to find the best preparation method for PQPG probe to detect biothiols
4.4.Results and Discussion
4.4.1.Characterization of dual fluorescent probe
4.4.2.Fabrication of MB
4.4.2.1.Characterization of probe preparation by using magnetic micro beads 3μm(MB)
4.4.2.2.Characterization of probe preparation by using magnetic micro beads 4μm(MB)
4.4.3.Detect Thiram by using PQPG probe
4.4.3.1.The effect of different ions on the fluorescence signal for PQPG probe after turned on by used Cys
4.4.4.Detect biothiols by colorimetric method
4.4.5.Turn on fluorescence method to detect Cys by using CTAB-QDs
4.4.6.The steps to find the best preparation method for PQPG probe to detect biothiols
4.5.References
5.CHAPTER 5:Summary and the future work
5.1.Summary
5.2.Future work
Acknowledgement
LIST OF PUBLICATIONS
【參考文獻(xiàn)】:
期刊論文
[1]生物巰化物的可視化檢測(英文)[J]. Yuan-yuan XU,Yang-yang SUN,Yu-juan ZHANG,Chen-he LU,Jin-feng MIAO. Journal of Zhejiang University-Science B(Biomedicine & Biotechnology). 2016(10)
本文編號:3420590
【文章來源】:華中農(nóng)業(yè)大學(xué)湖北省 211工程院校 教育部直屬院校
【文章頁數(shù)】:128 頁
【學(xué)位級別】:博士
【文章目錄】:
LIST OF ABBRVIATIONS
摘要
Abstract
1.CHAPTER 1 (Background)
1.1.Introduction
1.1.1.Research background and problem
1.2.Review of literature
1.2.1.Pesticide residues
1.2.2.Biothiols(BT)
1.3.Methods
1.3.1.The detection methods for sulfur pesticide residues
1.3.1.1.The SERS method for pesticide residues detection
1.3.2.The detection methods for biothiols
1.3.2.1.The UV-HPLC,RP-HPLC and UHPLC detection methods for biothiols
1.3.2.2.The colorimetric detection methods for biothiols
1.3.2.3.The fluorescence detection methods for biothiols
1.4.References
2.CHAPTER 2:Sensor for sulfur pesticide residues detection by turn on fluorescence method
2.1.Introduction
2.1.1.The aim of this chapter
2.2.Review of literature
2.3.Materials and Methods
2.3.1.Materials and Reagents
2.3.1.1.Equipment
2.3.2.Methods
2.3.2.1.Polystyrene microbeads synthesis and sulfonation
2.3.2.2.Gold nanoparticles synthesis
2.3.2.3.Probe preparation
2.3.2.3.1.Test rhodamine B(RhB)with Cys and Thiram
2.3.2.3.2.Using Au NPs as a quencher for RhB to detect Cys and Thiram
2.3.2.3.3.Use PS~+ (200 nm)beads as a carrier for prepare probe to detect Cys and Thiram
2.3.2.3.3.1.Preparing probe PS+ (200 nm) @Au/RhB for Thiram detection
2.3.2.3.3.2.Detect the best time for the detection of Thiram
2.3.2.3.3.3.Detect the sensitivity for the probe
2.3.2.3.3.4.Detect the selectivity for the probe
2.3.2.3.4.Preparing the probe by use PS~+2 μm
2.3.2.3.4.1.Detect the best time for the detection of Thiram
2.3.2.3.4.2.Detect the sensitivity for the probe
2.3.2.3.4.3.Detect the selectivity for the probe
2.3.2.3.5.Detect Thiram in spiked sample
2.4.Results and Discussion
2.4.1.Characterization of the procedure to find the suitable preparation for the probe to detect Thiram
2.4.2.Select the best time for the Thiram detection with probe
2.4.3.Characterization of probe preparation by PS+2 μm beads
2.4.4.The comparison between using PS~+2 μm beads and PS~+200 nm beads for preparing probe
2.4.5.Detect the probe sensitivity for Thiram detection
2.4.6.Detect the probe selectivity for Thiram detection
2.4.7.Recovery rate for each spiked sample
2.5.Conclusion
2.6.References
3.CHAPTER 3:Sensor for biothiols detection by turn on fluorescence method
3.1.Introduction
3.1.1.The aim of this chapter
3.2.Review of literature
3.3.Materials and Methods
3.3.1.Materials and Reagents
3.3.1.1.Equipment
3.3.2.Methods
3.3.2.1.Synthesis of Polystyrene microbeads and sulfonation
3.3.2.2.Gold nanoparticles synthesis
3.3.2.3.The synthesis procedure of Biothiol probe(PS/QDs/Au)
3.3.2.4.Flow cytometry-based detection of biothiols by(PS/QDs/Au)probe
3.3.2.5.Cell incubation and imaging
3.3.2.6.MTT Assay
3.3.2.7.Characterization
3.3.2.8.Detect Cys in Human urine
3.4.Results and Discussion
3.4.1.Synthesis of biothiols probe and characterization
3.4.2.Effect of pH and reaction kinetics for the biothiols detection
3.4.3.Flow cytometry-based biothiols detection
3.4.4.Biothiols detection in serum
3.4.5.Biothiols detection in human urine
2.5.Conclusion
3.6.References
4.CHAPTER 4:Sensors for sulfur pesticide residues and/or biothiols detection
4.1.Introduction
4.1.1.The aim of this chapter
4.2.Review
4.3.Materials and Methods
4.3.1.Materials and Reagents
4.3.1.1.Equipment
4.3.2.Methods
4.3.2.1.Synthesis of Polystyrene(2μm)microbeads and sulfonation
4.3.2.2.Gold nanoparticles synthesis
4.3.2.3.The synthesis procedure for PS/QDs/PDAMAC/SiO2-MPA beads
4.3.2.4.The synthesis procedure for PS/QDs(Highly Fluorescent)
4.3.2.5.The synthesis procedure for dual fluorescent probe
4.3.2.6.Preparation of Magnetic Beads and the pDA Coating
4.3.2.6.1.Preparing probe by using magnetic micro beads3 μm(MB)
4.3.2.6.2.Preparing probe by using magnetic micro beads4 μm(MB)
4.3.2.7.Detect Thiram by using PQPG probe
4.3.2.7.1.The effect of different ions on the fluorescence signal for PQPG probe after turned on by used Cys
4.3.2.8.Detect biothiols by colorimetric method
4.3.2.9.Turn on fluorescence method to detect Cys by using CTAB-QDs
4.3.2.9.1.Preparation of CTAB-QDs(Cetyltrimethylammonium bromide-QDs)
4.3.2.10.Detect Thiram by use PMM(Plasmonic Magnetic Microbeads)and SERS method
4.3.2.10.1.Preparation of13 nm Au seeds decorated by magnetic PS beads with dopamine coating
4.3.2.10.1.1.Preparation of Au seeds(13 nm)solution
4.3.2.10.2.Ag nano-island growth on dopamine shell
4.3.3.10.2.1.Preparation of glucose alkaline solution
4.3.2.10.2.2.Preparation of silver nitrate ammonia solution
4.3.2.10.3.Select the best PMM structure to detect Thiram by use SERS method
4.3.2.11.The steps to find the best preparation method for PQPG probe to detect biothiols
4.4.Results and Discussion
4.4.1.Characterization of dual fluorescent probe
4.4.2.Fabrication of MB
4.4.2.1.Characterization of probe preparation by using magnetic micro beads 3μm(MB)
4.4.2.2.Characterization of probe preparation by using magnetic micro beads 4μm(MB)
4.4.3.Detect Thiram by using PQPG probe
4.4.3.1.The effect of different ions on the fluorescence signal for PQPG probe after turned on by used Cys
4.4.4.Detect biothiols by colorimetric method
4.4.5.Turn on fluorescence method to detect Cys by using CTAB-QDs
4.4.6.The steps to find the best preparation method for PQPG probe to detect biothiols
4.5.References
5.CHAPTER 5:Summary and the future work
5.1.Summary
5.2.Future work
Acknowledgement
LIST OF PUBLICATIONS
【參考文獻(xiàn)】:
期刊論文
[1]生物巰化物的可視化檢測(英文)[J]. Yuan-yuan XU,Yang-yang SUN,Yu-juan ZHANG,Chen-he LU,Jin-feng MIAO. Journal of Zhejiang University-Science B(Biomedicine & Biotechnology). 2016(10)
本文編號:3420590
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/3420590.html
最近更新
教材專著