天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

機(jī)器學(xué)習(xí)算法可近似性的量化評(píng)估分析

發(fā)布時(shí)間:2019-06-22 17:09
【摘要】:近年來,以神經(jīng)網(wǎng)絡(luò)為代表的機(jī)器學(xué)習(xí)算法發(fā)展迅速并被廣泛應(yīng)用在圖像識(shí)別、數(shù)據(jù)搜索乃至金融趨勢分析等領(lǐng)域.而隨著問題規(guī)模的擴(kuò)大和數(shù)據(jù)維度的增長,算法能耗問題日益突出,由于機(jī)器學(xué)習(xí)算法自身擁有的近似特性,近似計(jì)算這種犧牲結(jié)果的少量精確度降低能耗的技術(shù),被許多研究者用來解決學(xué)習(xí)算法的能耗問題.我們發(fā)現(xiàn),目前的工作大多專注于利用特定算法的近似特性而忽視了不同算法近似特性的差別對(duì)能耗優(yōu)化帶來的影響,而為了分類任務(wù)使用近似計(jì)算時(shí)能夠做出能耗最優(yōu)的選擇,了解算法"可近似性"上的差異對(duì)近似計(jì)算優(yōu)化能耗至關(guān)重要.因此,選取了支持向量機(jī)(SVM)、隨機(jī)森林(RF)和神經(jīng)網(wǎng)絡(luò)(NN)3類常用的監(jiān)督型機(jī)器學(xué)習(xí)算法,評(píng)估了針對(duì)不同類型能耗時(shí)不同算法的可近似性,并建立了存儲(chǔ)污染敏感度、訪存污染敏感度和能耗差異度等指標(biāo)來表征算法可近似性的差距,評(píng)估得到的結(jié)論將有助于機(jī)器學(xué)習(xí)算法在使用近似計(jì)算技術(shù)時(shí)達(dá)到最優(yōu)化能耗的目的.
[Abstract]:In recent years, machine learning algorithms, represented by neural networks, have developed rapidly and have been widely used in image recognition, data search and even financial trend analysis. With the expansion of the scale of the problem and the increase of the data dimension, the problem of energy consumption of the algorithm is becoming more and more prominent. Because of the approximate characteristics of the machine learning algorithm itself, the technology of reducing energy consumption by approximate calculation of a small amount of accuracy of the sacrifice results has been used by many researchers to solve the problem of energy consumption of the learning algorithm. We find that most of the current work focuses on using the approximate characteristics of specific algorithms and neglects the influence of the difference of approximate characteristics of different algorithms on energy consumption optimization. In order to make the optimal choice of energy consumption when using approximate calculation of classification tasks, it is very important to understand the difference of algorithm "approximability" for approximate calculation of optimal energy consumption. Therefore, three kinds of supervised machine learning algorithms, support vector machine (SVM), random forest (RF) and neural network (NN), are selected to evaluate the approximability of different algorithms for different types of energy consumption, and some indexes, such as storage pollution sensitivity, visiting pollution sensitivity and energy consumption difference, are established to characterize the similarity gap of the algorithm. The conclusion of the evaluation will help the machine learning algorithm to optimize the energy consumption when using approximate computing technology.
【作者單位】: 計(jì)算機(jī)體系結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院計(jì)算技術(shù)研究所);中國科學(xué)院大學(xué);
【基金】:國家自然科學(xué)基金項(xiàng)目(61572470,61532017,61522406,61432017,61376043,61521092) 中國科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目(404441000)~~
【分類號(hào)】:TP181


本文編號(hào):2504799

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2504799.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶50a9f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com