下肢外骨骼機(jī)器人系統(tǒng)參數(shù)辨識(shí)和控制方法研究
[Abstract]:Exoskeleton robot is a wearable robot, which has a wide application prospect in marching, medical rehabilitation and civil assistance. In this paper, the sensing system and control algorithm of exoskeleton robot are studied from the point of view of series elastic drive, dynamic model of robot, design of sensitivity amplification controller and optimization of on-line reinforcement learning parameters. In order to enhance the comfortableness of the wearer in the walking process of the wearing robot and to improve the bionic characteristics of the robot, this paper improves on the traditional exoskeleton joint and makes a series of elastic elements between the joint driving motor and the load. Used to slow down the impact of motion and store motion energy. Firstly, the elastic joint is modeled by mathematical method, and its dynamic following characteristic is analyzed by MATLAB simulation to determine the stiffness of the elastic body suitable for the system. In order to simplify the robot sensor system to the greatest extent, the sensitivity amplification control method is adopted in this paper. This control method does not need any sensors to detect the human-computer interaction force. However, the accuracy of the dynamic equation and dynamic parameters of the robot is very high. In this paper, the dynamic equations of the robot are derived by using Lagrange equation. In order to ensure the accuracy of the model to the greatest extent, the joint friction moment and the moment of inertia of the motor rotor are considered in the model. The mass and centroid position of the member are identified by the experimental method. The designed controller adopts the robot dynamics parameters identified by experiments. After the experiment of constant coefficient sensitivity amplification control is successful, in order to further optimize the robot follow-up effect, In this paper, an algorithm for on-line optimization of sensitivity coefficient by reinforcement learning is designed. In other words, the lower layer still adopts sensitivity amplification control, and the upper layer optimizes the sensitivity coefficient by DMP trajectory planning and reinforcement learning online parameter optimization algorithm. The DMP algorithm is used to study the human moving gait and the prediction trajectory is given. The deviation from the actual track is the real time reward of Q learning algorithm. The stability of the control algorithm is verified by MATLAB simulation. Finally, the experimental platform of exoskeleton robot is built, and the designed algorithm is verified on the exoskeleton robot experimental system, which verifies the accuracy of dynamic parameter identification and the effectiveness of on-line optimization sensitivity coefficient algorithm.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP242
【相似文獻(xiàn)】
相關(guān)博士學(xué)位論文 前4條
1 張超;下肢助力外骨骼機(jī)器人研究[D];哈爾濱工業(yè)大學(xué);2016年
2 陳春杰;基于柔性傳動(dòng)的助力全身外骨骼機(jī)器人系統(tǒng)研究[D];中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院);2017年
3 龍億;下肢外骨骼人體運(yùn)動(dòng)預(yù)測(cè)與人機(jī)協(xié)調(diào)控制技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2017年
4 陳珊;行走下肢液壓增力外骨骼自適應(yīng)魯棒力控制研究[D];浙江大學(xué);2017年
相關(guān)碩士學(xué)位論文 前7條
1 叢林;下肢外骨骼機(jī)器人系統(tǒng)參數(shù)辨識(shí)和控制方法研究[D];哈爾濱工業(yè)大學(xué);2017年
2 唐逵;基于有限元方法的下肢外骨骼結(jié)構(gòu)優(yōu)化設(shè)計(jì)[D];電子科技大學(xué);2017年
3 馬舜;主被動(dòng)結(jié)合式下肢助力外骨骼機(jī)器人研制[D];哈爾濱工業(yè)大學(xué);2017年
4 楊陽(yáng);外骨骼電機(jī)伺服驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)[D];電子科技大學(xué);2017年
5 盛文濤;基于人機(jī)耦合系統(tǒng)特性分析的外骨骼單腿參數(shù)辨識(shí)方法[D];哈爾濱工業(yè)大學(xué);2017年
6 牟洋;拇指功能康復(fù)的外骨骼機(jī)器人研究[D];哈爾濱工業(yè)大學(xué);2017年
7 郭寧;上肢神經(jīng)康復(fù)外骨骼機(jī)器人控制策略研究[D];哈爾濱工業(yè)大學(xué);2017年
,本文編號(hào):2419376
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2419376.html