基于布谷鳥算法的特征選擇研究
[Abstract]:Machine learning is one of the most popular fields, attracting research and attention from all walks of life. It not only has been applied in medical treatment, image, text and other fields, but also is maintaining its vigorous development as a new force. Machine learning is data-driven, but many problems in reality often involve a lot of possible factors, which makes the original features have high-dimensional characteristics. This characteristic is not only low in training and prediction efficiency, but also sensitive to irrelevant and redundant features for machine learning, resulting in a decrease in accuracy. Feature selection is an effective method to solve the above problems. In this paper, we first introduce the process of feature preprocessing and feature selection, and then classify feature selection from two aspects of search strategy and evaluation criterion, and explain the methods. Support vector machine (SVM) is chosen as the criterion to evaluate the result of feature selection. The principle, derivation, kernel concept and generalization method are introduced. Particle swarm optimization and cuckoo algorithm can be applied to feature selection as a random strategy, so this paper will describe the principle and methods of the two algorithms, and draw out their binary versions according to the specific needs. After analyzing the search behavior of binary cuckoo algorithm, a new binary cuckoo algorithm is proposed, in which the search direction and precision are optimized. On this basis, a new PSO-NCS algorithm is proposed, which combines the improved binary cuckoo algorithm with the PSO algorithm, and makes full use of the convergence characteristics of PSO and the global optimization ability of CS, which makes both of them complement each other and can not only jump out of the local optimum. Better convergence accuracy can also be achieved. The PSO-NCS algorithm is used to test several data sets, and the result is slightly better than other algorithms. It is proved that the algorithm is more efficient and convergent in feature selection.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李東生;高楊;雍愛霞;;基于改進(jìn)離散布谷鳥算法的干擾資源分配研究[J];電子與信息學(xué)報(bào);2016年04期
2 張晶;吳虎勝;;改進(jìn)二進(jìn)制布谷鳥搜索算法求解多維背包問題[J];計(jì)算機(jī)應(yīng)用;2015年01期
3 馮登科;阮奇;杜利敏;;二進(jìn)制布谷鳥搜索算法[J];計(jì)算機(jī)應(yīng)用;2013年06期
4 高潮;劉志雄;;基于輪盤賭編碼和粒子群算法的并行機(jī)調(diào)度優(yōu)化[J];機(jī)械制造;2010年06期
5 陳濤;張思發(fā);;分支限界法求解實(shí)際TSP問題[J];計(jì)算機(jī)工程與設(shè)計(jì);2009年10期
6 王輝;錢鋒;;群體智能優(yōu)化算法[J];化工自動(dòng)化及儀表;2007年05期
7 常彥偉;王耀才;曹云峰;王致杰;;基于誤差相關(guān)度學(xué)習(xí)樣本選擇[J];計(jì)算機(jī)工程與設(shè)計(jì);2007年16期
相關(guān)博士學(xué)位論文 前2條
1 黃東山;特征選擇及半監(jiān)督分類方法研究[D];華中科技大學(xué);2011年
2 劉建華;粒子群算法的基本理論及其改進(jìn)研究[D];中南大學(xué);2009年
相關(guān)碩士學(xué)位論文 前1條
1 黃繼達(dá);布谷鳥算法的改進(jìn)及其應(yīng)用研究[D];華中科技大學(xué);2014年
,本文編號(hào):2416775
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2416775.html