天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于協(xié)同學(xué)的深度協(xié)同神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用

發(fā)布時(shí)間:2019-01-07 17:48
【摘要】:深度學(xué)習(xí)是當(dāng)今科學(xué)技術(shù)領(lǐng)域最熱門的話題之一,也是人工智能領(lǐng)域最為成功和有效的思想方法,基于深度學(xué)習(xí)理論的研究和應(yīng)用也層出不窮。然而隨著對(duì)深度學(xué)習(xí)領(lǐng)域研究的深入,深度學(xué)習(xí)領(lǐng)域所暴露出來的計(jì)算成本過高和訓(xùn)練成本過高等問題也亟待解決。本文主要研究基于協(xié)同學(xué)原理構(gòu)建的深度協(xié)同神經(jīng)網(wǎng)絡(luò)是一種全新的深度學(xué)習(xí)網(wǎng)絡(luò)模型,能夠有效的減小傳統(tǒng)深度學(xué)習(xí)中計(jì)算成本過高和訓(xùn)練成本過高等問題。本文的主要內(nèi)容為:首先,介紹了協(xié)同學(xué)理論的基本思想、數(shù)學(xué)模型和相關(guān)重要概念。接著介紹了基于協(xié)同學(xué)理論的一類全新的神經(jīng)網(wǎng)絡(luò)模型:協(xié)同神經(jīng)網(wǎng)絡(luò)。闡述了協(xié)同神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)模型、結(jié)構(gòu)模型和運(yùn)行流程,并介紹了協(xié)同神經(jīng)網(wǎng)絡(luò)的幾種基本算法:基于PFR模型的分類器算法、基于PFAP的分類器算法、SCAP算法和SCAPAP算法。詳盡的說明了協(xié)同學(xué)和協(xié)同神經(jīng)網(wǎng)絡(luò)的各項(xiàng)特性。其次,介紹了目前傳統(tǒng)的幾種深度神經(jīng)網(wǎng)絡(luò)模型:卷積神經(jīng)網(wǎng)絡(luò)和深度信念網(wǎng)絡(luò),并分別介紹了他們的模型結(jié)構(gòu)和運(yùn)行過程。以協(xié)同學(xué)原理和傳統(tǒng)深度神經(jīng)網(wǎng)絡(luò)的模型結(jié)構(gòu)為基礎(chǔ)構(gòu)建深度協(xié)同神經(jīng)網(wǎng)絡(luò),并詳細(xì)描述了深度協(xié)同神經(jīng)網(wǎng)絡(luò)的模型結(jié)構(gòu)、運(yùn)行過程和算法步驟。為后續(xù)深度協(xié)同神經(jīng)網(wǎng)絡(luò)的研究與應(yīng)用提供了充分的理論支持。最后,基于上述深度協(xié)同神經(jīng)網(wǎng)絡(luò)的模型,設(shè)計(jì)了在不同樣本庫下深度協(xié)同神經(jīng)網(wǎng)絡(luò)的各項(xiàng)性能實(shí)驗(yàn),同時(shí)也將深度協(xié)同神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)和深度信念網(wǎng)絡(luò)在相同樣本庫下進(jìn)行實(shí)驗(yàn)測(cè)試,縱向?qū)Ρ人鼈兊母黜?xiàng)性能特點(diǎn)。綜合實(shí)驗(yàn)結(jié)果表明深度協(xié)同神經(jīng)網(wǎng)絡(luò)不僅在識(shí)別效果上有不錯(cuò)的表現(xiàn),而且在計(jì)算成本和運(yùn)行效率上有著較好的表現(xiàn);谏鲜錾疃葏f(xié)同神經(jīng)網(wǎng)絡(luò)的性能特點(diǎn),本文還自主設(shè)計(jì)、搭建、調(diào)試了無人機(jī)硬件平臺(tái),將深度協(xié)同神經(jīng)網(wǎng)絡(luò)應(yīng)用于無人機(jī)的自主降落過程中對(duì)可降落標(biāo)志物識(shí)別的飛行控制系統(tǒng)。本文基于仿真數(shù)據(jù)和無人機(jī)自主降落標(biāo)志的識(shí)別,驗(yàn)證了所提出的深度協(xié)同神經(jīng)網(wǎng)絡(luò)模型的有效性,為后續(xù)深入研究無人機(jī)自主降落、空中避障打下了基礎(chǔ)。
[Abstract]:Deep learning is one of the most popular topics in the field of science and technology, and it is also the most successful and effective ideological method in the field of artificial intelligence. However, with the in-depth research in the field of in-depth learning, the problems of high computational cost and high training cost exposed in the field of in-depth learning need to be solved. In this paper, the deep cooperative neural network based on the principle of synergetic learning is a new kind of deep learning network model, which can effectively reduce the problems of high computational cost and too high training cost in traditional deep learning. The main contents of this paper are as follows: firstly, the basic idea, mathematical model and related important concepts of Synergetics theory are introduced. Then, a new neural network model based on synergetic theory is introduced. The mathematical model, structure model and running flow of cooperative neural network are introduced, and several basic algorithms of cooperative neural network are introduced: classifier algorithm based on PFR model, classifier algorithm based on PFAP, SCAP algorithm and SCAPAP algorithm. The characteristics of Synergetics and Synergetic Neural Network are explained in detail. Secondly, this paper introduces several traditional depth neural network models: convolution neural network and depth belief network, and introduces their model structure and running process respectively. Based on the synergetic principle and the model structure of the traditional depth neural network, the deep cooperative neural network is constructed, and the model structure, running process and algorithm steps of the deep cooperative neural network are described in detail. It provides sufficient theoretical support for the research and application of the following deep cooperative neural networks. Finally, based on the model of the deep synergetic neural network mentioned above, the performance experiments of the deep cooperative neural network under different sample databases are designed. At the same time, the deep cooperative neural network, the traditional convolutional neural network and the depth belief network are tested under the same sample base, and their performance characteristics are compared longitudinally. The experimental results show that the deep cooperative neural network not only has a good performance in recognition effect, but also has a good performance in computing cost and running efficiency. Based on the performance of the deep cooperative neural network, the hardware platform of UAV is designed, built and debugged independently. The depth cooperative neural network is applied to the flight control system of UAV to recognize landable markers during autonomous landing. Based on the simulation data and the recognition of UAV autonomous landing marks, the effectiveness of the proposed deep cooperative neural network model is verified in this paper, which lays a foundation for further research on UAV autonomous landing and air obstacle avoidance.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP183

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊曉帥 ,付玫;神經(jīng)網(wǎng)絡(luò)技術(shù)讓管理更輕松[J];軟件世界;2000年11期

2 云中客;新的神經(jīng)網(wǎng)絡(luò)來自于仿生學(xué)[J];物理;2001年10期

3 唐春明,高協(xié)平;進(jìn)化神經(jīng)網(wǎng)絡(luò)的研究進(jìn)展[J];系統(tǒng)工程與電子技術(shù);2001年10期

4 李智;一種基于神經(jīng)網(wǎng)絡(luò)的煤炭調(diào)運(yùn)優(yōu)化方法[J];長沙鐵道學(xué)院學(xué)報(bào);2003年02期

5 程科,王士同,楊靜宇;新型模糊形態(tài)神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];計(jì)算機(jī)工程與應(yīng)用;2004年21期

6 王凡,孟立凡;關(guān)于使用神經(jīng)網(wǎng)絡(luò)推定操作者疲勞的研究[J];人類工效學(xué);2004年03期

7 周麗暉;從統(tǒng)計(jì)角度看神經(jīng)網(wǎng)絡(luò)[J];統(tǒng)計(jì)教育;2005年06期

8 趙奇 ,劉開第 ,龐彥軍;灰色補(bǔ)償神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];微計(jì)算機(jī)信息;2005年14期

9 袁婷;;神經(jīng)網(wǎng)絡(luò)在股票市場(chǎng)預(yù)測(cè)中的應(yīng)用[J];軟件導(dǎo)刊;2006年05期

10 尚晉;楊有;;從神經(jīng)網(wǎng)絡(luò)的過去談科學(xué)發(fā)展觀[J];重慶三峽學(xué)院學(xué)報(bào);2006年03期

相關(guān)會(huì)議論文 前10條

1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡(luò)的混沌性[A];1996中國控制與決策學(xué)術(shù)年會(huì)論文集[C];1996年

2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡(luò)[A];2003年中國智能自動(dòng)化會(huì)議論文集(上冊(cè))[C];2003年

3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡(luò)和簡(jiǎn)單規(guī)劃的識(shí)別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年

4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

5 鐘義信;;知識(shí)論:神經(jīng)網(wǎng)絡(luò)的新機(jī)遇——紀(jì)念中國神經(jīng)網(wǎng)絡(luò)10周年[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

6 許進(jìn);保錚;;神經(jīng)網(wǎng)絡(luò)與圖論[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預(yù)報(bào)產(chǎn)品的神經(jīng)網(wǎng)絡(luò)釋用預(yù)報(bào)應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

8 田金亭;;神經(jīng)網(wǎng)絡(luò)在中學(xué)生創(chuàng)造力評(píng)估中的應(yīng)用[A];第十二屆全國心理學(xué)學(xué)術(shù)大會(huì)論文摘要集[C];2009年

9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡(luò)的混沌特性研究[A];2009年中國智能自動(dòng)化會(huì)議論文集(第七分冊(cè))[南京理工大學(xué)學(xué)報(bào)(增刊)][C];2009年

10 張廣遠(yuǎn);萬強(qiáng);曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷方法研究[A];第十二屆全國設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2010年

相關(guān)重要報(bào)紙文章 前10條

1 美國明尼蘇達(dá)大學(xué)社會(huì)學(xué)博士 密西西比州立大學(xué)國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護(hù)好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國教師報(bào);2014年

2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計(jì)算機(jī)世界;2001年

3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國紡織報(bào);2003年

4 中國科技大學(xué)計(jì)算機(jī)系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計(jì)算機(jī)世界;2003年

5 高劍平;協(xié)同學(xué)與構(gòu)建和諧社會(huì)[N];廣西日?qǐng)?bào);2007年

6 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復(fù)雜工藝“黑箱”[N];解放日?qǐng)?bào);2007年

7 本報(bào)記者 劉霞;美用DNA制造出首個(gè)人造神經(jīng)網(wǎng)絡(luò)[N];科技日?qǐng)?bào);2011年

8 健康時(shí)報(bào)特約記者  張獻(xiàn)懷;干細(xì)胞移植:修復(fù)受損的神經(jīng)網(wǎng)絡(luò)[N];健康時(shí)報(bào);2006年

9 劉力;我半導(dǎo)體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達(dá)國際先進(jìn)水平[N];中國電子報(bào);2001年

10 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導(dǎo)報(bào);2002年

相關(guān)博士學(xué)位論文 前10條

1 楊旭華;神經(jīng)網(wǎng)絡(luò)及其在控制中的應(yīng)用研究[D];浙江大學(xué);2004年

2 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無線通信算法研究[D];山東大學(xué);2015年

3 石艷超;憶阻神經(jīng)網(wǎng)絡(luò)的混沌性及幾類時(shí)滯神經(jīng)網(wǎng)絡(luò)的同步研究[D];電子科技大學(xué);2014年

4 王新迎;基于隨機(jī)映射神經(jīng)網(wǎng)絡(luò)的多元時(shí)間序列預(yù)測(cè)方法研究[D];大連理工大學(xué);2015年

5 付愛民;極速學(xué)習(xí)機(jī)的訓(xùn)練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學(xué);2015年

6 李輝;基于粒計(jì)算的神經(jīng)網(wǎng)絡(luò)及集成方法研究[D];中國礦業(yè)大學(xué);2015年

7 王衛(wèi)蘋;復(fù)雜網(wǎng)絡(luò)幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學(xué);2015年

8 張海軍;基于云計(jì)算的神經(jīng)網(wǎng)絡(luò)并行實(shí)現(xiàn)及其學(xué)習(xí)方法研究[D];華南理工大學(xué);2015年

9 李艷晴;風(fēng)速時(shí)間序列預(yù)測(cè)算法研究[D];北京科技大學(xué);2016年

10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 沈宗輝;基于協(xié)同學(xué)的深度協(xié)同神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用[D];電子科技大學(xué);2017年

2 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡(luò)與高校效益預(yù)測(cè)的研究[D];華南理工大學(xué);2015年

3 賈文靜;基于改進(jìn)型神經(jīng)網(wǎng)絡(luò)的風(fēng)力發(fā)電系統(tǒng)預(yù)測(cè)及控制研究[D];燕山大學(xué);2015年

4 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學(xué);2015年

5 陳彥至;神經(jīng)網(wǎng)絡(luò)降維算法研究與應(yīng)用[D];華南理工大學(xué);2015年

6 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡(luò)研究[D];西南大學(xué);2015年

7 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡(luò)的遙感圖像分類研究[D];昆明理工大學(xué);2015年

8 李志杰;基于神經(jīng)網(wǎng)絡(luò)的上證指數(shù)預(yù)測(cè)研究[D];華南理工大學(xué);2015年

9 陳少吉;基于神經(jīng)網(wǎng)絡(luò)血壓預(yù)測(cè)研究與系統(tǒng)實(shí)現(xiàn)[D];華南理工大學(xué);2015年

10 張韜;幾類時(shí)滯神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析[D];渤海大學(xué);2015年

,

本文編號(hào):2403951

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2403951.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1d6fc***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com