分布式多傳感器組網(wǎng)協(xié)同跟蹤方法研究
[Abstract]:With the rapid development of computer, sensor and communication technology, a large number of multi-sensor systems for complex applications have emerged. The effective fusion of multi-sensor information is an effective way to improve the performance of target detection. The limited sensor capacity and uncertain target environment make it impossible for the sensor network to track the same target using all sensors. How to select limited sensors, communicate among different sensors and cooperate to complete tracking task is the core of cooperative tracking in sensor network. As the number of sensors and targets increases, the complexity of cooperative tracking increases. In large scale sensor networks, due to the limitation of capacity and processing capacity, distributed processing can avoid the effect of single sensor failure on the performance of the whole network and reduce the communication requirements. Based on the previous work, this paper studies the cooperative tracking problem of distributed multi-sensor network from different distributed fusion frameworks and sensor resource management optimization methods. The main research contents are as follows: 1. In view of the limited processing capacity of the fusion center of large-scale sensor networks, a distributed cooperative tracking algorithm for asynchronous sensor networks is proposed, considering the asynchronous sampling of each sensor in the sensor network. Firstly, the sensors deployed in the surveillance area are clustered and the finite subnet is constructed. Secondly, based on the principle of maximum information increment, sensor selection is carried out to determine the set of sensors involved in cooperative tracking in each subnet at the next moment, and the sensors involved in cooperative tracking are tracked by asynchronous sequential fusion. Then the multi-hop method is used to transfer information between sensors, to determine the optimal communication transmission path, and to perform global data fusion. Finally, the simulation verifies the feasibility of the algorithm. 2. A multi-sensor multi-target cooperative tracking algorithm based on PCRLB is proposed under the condition of multiple targets in the monitoring region and considering the time-varying influence of coordinate transformation on the measurement error of the sensor. Firstly, the description of time-varying measurement error is given, the influence of time-varying measurement error and tracking performance is analyzed, and the PCRLB index under time-varying measurement error is established. Then the multi-sensor multi-target assignment based on the PCRLB optimization index is carried out to determine the sensor set for tracking the target at the next time. At the same time, in the process of filtering and tracking, considering the change of sensor measurement variance brought by coordinate transformation, the multi-sensor cooperative tracking under time-varying measurement variance is realized by transforming Kalman filter. Finally, the feasibility of the algorithm is verified by simulation. 3. Aiming at the limitation of communication and transmission between sensors in large scale sensor networks, a distributed tracking algorithm for sensor networks based on PCRLB is proposed. The decentralized PCRLB index is designed by using the distributed sensor network structure based on tree topology. The sensor is selected based on decentralized PCRLB index, and the local fusion center is estimated by parallel filtering. The simulation results show that the decentralized multi-sensor cooperative tracking algorithm has some advantages compared with the centralized fusion algorithm.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡振濤;曹志偉;李松;李樅樅;;基于容積卡爾曼濾波的異質(zhì)多傳感器融合算法[J];光電子.激光;2014年04期
2 羅文濤;許蘊(yùn)山;向建軍;夏海寶;;基于隨機(jī)觀測集和信息論的多傳感器管理算法[J];現(xiàn)代雷達(dá);2013年12期
3 肖秦;;協(xié)同探測中傳感器管理的優(yōu)化方法[J];四川兵工學(xué)報;2013年04期
4 王敏;;雷達(dá)目標(biāo)跟蹤的轉(zhuǎn)換坐標(biāo)卡爾曼濾波算法[J];科技創(chuàng)新導(dǎo)報;2013年01期
5 趙宗貴;王國強(qiáng);刁聯(lián)旺;;戰(zhàn)場感知資源管理與信息融合[J];指揮信息系統(tǒng)與技術(shù);2012年01期
6 李琪;郭娜;劉先省;;基于Unscented粒子濾波的傳感器管理算法[J];火力與指揮控制;2011年06期
7 趙硯;張寅生;易東云;張倩;;基于PCRLB的低軌星座對自由段多目標(biāo)的多傳感器調(diào)度算法[J];宇航學(xué)報;2011年04期
8 歐鑫;顧杰;龍曉波;;相控陣?yán)走_(dá)系統(tǒng)最大跟蹤能力研究[J];信息與電子工程;2010年04期
9 羅開平;姜維;李一軍;;傳感器管理述評[J];電子學(xué)報;2010年08期
10 張廣遠(yuǎn);王福軍;魏震生;;一種基于遺傳算法的多傳感器管理算法[J];現(xiàn)代防御技術(shù);2008年06期
相關(guān)博士學(xué)位論文 前4條
1 劉欽;多傳感器組網(wǎng)協(xié)同跟蹤方法研究[D];西安電子科技大學(xué);2013年
2 田雪怡;多傳感器數(shù)據(jù)關(guān)聯(lián)與航跡融合技術(shù)研究[D];哈爾濱工程大學(xué);2012年
3 黃友平;貝葉斯網(wǎng)絡(luò)研究[D];中國科學(xué)院研究生院(計算技術(shù)研究所);2005年
4 劉先省;傳感器管理方法研究[D];西北工業(yè)大學(xué);2000年
相關(guān)碩士學(xué)位論文 前1條
1 周林;基于信息論的傳感器管理算法研究[D];河南大學(xué);2005年
,本文編號:2359207
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2359207.html