冗余鋪絲機(jī)械手自運動流形分析及優(yōu)化
[Abstract]:In order to improve the flexibility and obstacle avoidance ability of the traditional position and pose separated wire laying manipulator, a new self-moving manifold algorithm for the position and pose coupling redundant laying manipulator is proposed in order to improve the flexibility and obstacle avoidance ability of the composite wire laying process. Because of the strong coupling between the joints of the redundant filament-laying manipulator, the inverse solution is difficult to solve, so the inverse solution of the redundant filament-laying manipulator is decomposed into the known Paden-Kahan spin quantum problem and the special rotatory quantum problem composed of the position joints. The inverse solution of redundant wire-laying manipulator is obtained by solving the special spin quantum problem, which improves the efficiency and intuitiveness of solving the inverse solution of the redundant wire-laying manipulator effectively compared with the position and pose separation method. Since the inverse solution of the redundant wire laying manipulator presents the structure of manifold, according to the multidimensional characteristics of the self-moving manifold of the redundant wire laying manipulator, The self-moving manifold of redundant filament-laying manipulator is mapped to position joint space and attitude joint space respectively to obtain its three-dimensional simulation curve. Because the optimal manifold of the redundant wire laying manipulator is more valuable in practical control, so the end actuator of the manipulator moves smoothly along the core mold trajectory in order to minimize the change of the joint velocity of the manipulator. Based on the constraint functional of the joint velocity of the redundant wire-laying manipulator, the corresponding kinematics optimization manifold is proposed, which lays the foundation for the subsequent optimal control. Finally, the feasibility of the proposed method is verified by taking the S-shaped inlet of a certain type of aircraft as an example.
【作者單位】: 南京航空航天大學(xué)機(jī)電學(xué)院;
【基金】:國家自然科學(xué)基金(51175261) 國家“973”計劃(2014CB046501) 高等學(xué)校博士學(xué)科點專項科研基金(20123218110020)~~
【分類號】:TP241
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 王念東;劉毅;肖軍;;復(fù)合材料管狀結(jié)構(gòu)自動鋪絲路徑算法[J];計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報;2008年02期
2 ;[J];;年期
相關(guān)會議論文 前2條
1 孫成;文立偉;肖軍;嚴(yán)飆;宋清華;;翼梁自動鋪絲模具的變形分析與誤差補(bǔ)償方法[A];第17屆全國復(fù)合材料學(xué)術(shù)會議(復(fù)合材料制造技術(shù)與設(shè)備分論壇)論文集[C];2012年
2 張建寶;王俊鋒;孫宏杰;董波;梅立;郝衛(wèi);;航天復(fù)合材料自動化成型技術(shù)研究現(xiàn)狀[A];第17屆全國復(fù)合材料學(xué)術(shù)會議(復(fù)合材料制造技術(shù)與設(shè)備分論壇)論文集[C];2012年
相關(guān)碩士學(xué)位論文 前10條
1 李燕元;自動鋪絲技術(shù)中具有修改機(jī)制的路徑規(guī)劃方法[D];南京航空航天大學(xué);2011年
2 許斌;復(fù)合材料自動鋪絲編程技術(shù)研究[D];南京航空航天大學(xué);2005年
3 黃威;復(fù)合材料自動鋪絲運動仿真及驗證[D];南京航空航天大學(xué);2016年
4 齊力朋;基于虛擬樣機(jī)技術(shù)的腈綸定型鋪絲機(jī)的設(shè)計[D];哈爾濱工業(yè)大學(xué);2014年
5 丁振強(qiáng);一種新型腈綸鋪絲機(jī)的研制及鋪絲質(zhì)量研究[D];哈爾濱工業(yè)大學(xué);2007年
6 張婷婷;基于測地等距網(wǎng)的鋪絲路徑規(guī)劃[D];南京航空航天大學(xué);2014年
7 聞捷;自動鋪絲復(fù)合材料加筋結(jié)構(gòu)力學(xué)分析[D];南京航空航天大學(xué);2014年
8 李善緣;復(fù)合材料鋪絲成型中的路徑規(guī)劃[D];南京航空航天大學(xué);2009年
9 朱麗君;復(fù)合材料自動鋪絲技術(shù)中的路徑計算[D];南京航空航天大學(xué);2010年
10 尹書云;自由型面自動鋪絲線型規(guī)劃約束研究[D];武漢理工大學(xué);2013年
,本文編號:2294406
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2294406.html