并行多目標(biāo)智能優(yōu)化算法及其應(yīng)用的研究
[Abstract]:In real life, optimization problems are common and often involve conflicting goals. Because of the introduction of many design indexes, the search space of the problem is obviously enlarged, and the difficulty of solving the problem is greatly increased. Therefore, in order to solve the multi-objective optimization problem, which has a large amount of computation, It is a feasible solution to make full use of the optimization ability of intelligent optimization algorithm and large scale high performance parallel computing technology. This paper presents a parallel multi-objective team progress algorithm based on the adaptive idea and parallelization scheme based on the non-dominated ranking team progress algorithm (NRTPA),). The parallel multi-objective team progress algorithm combines the two-population evolution mechanism with the non-dominated sorting multi-objective strategy to improve the approximation uniformity and broadness of the multi-objective solution set with efficient optimization efficiency. According to the visual verification of test function set and the quantitative comparison of measurement index, the test results show that the parallel multi-objective team progress algorithm has fast convergence ability and good solution set distribution, and the stability of the algorithm is improved obviously. The parallel multi-objective algorithm is applied to the optimization design of antenna array pattern, and the excitation amplitude of each array element is optimized to reduce the sidelobe level and design zero trapping position. The establishment process of objective function is introduced in detail. The search space of feasible region is reduced effectively by using the symmetrical structure and radiation characteristics of antenna array. In the application example of antenna array, the algorithm can find a series of excellent solutions and perform well on multiple optimization objectives, which shows that the parallel multi-objective team progress algorithm has the ability to solve practical engineering problems such as electromagnetic field optimization.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18
【參考文獻】
相關(guān)期刊論文 前5條
1 王維博;馮全源;;粒子群優(yōu)化算法在天線方向圖綜合中的應(yīng)用[J];電子科技大學(xué)學(xué)報;2011年02期
2 公茂果;焦李成;楊咚咚;馬文萍;;進化多目標(biāo)優(yōu)化算法研究[J];軟件學(xué)報;2009年02期
3 薄亞明;;多維函數(shù)全局尋優(yōu)的團隊進步算法[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2008年05期
4 于濱;楊忠振;程春田;;并行蟻群算法在公交線網(wǎng)優(yōu)化中應(yīng)用[J];大連理工大學(xué)學(xué)報;2007年02期
5 李昌隆,陳曉波,程鵬;并行多目標(biāo)遺傳算法在控制系統(tǒng)優(yōu)化中的應(yīng)用[J];微計算機信息;2005年12期
相關(guān)博士學(xué)位論文 前2條
1 王小根;粒子群優(yōu)化算法的改進及其在圖像中的應(yīng)用研究[D];江南大學(xué);2009年
2 莫鴻強;遺傳算法搜索能力和編碼方式研究[D];華南理工大學(xué);2001年
相關(guān)碩士學(xué)位論文 前3條
1 趙博偉;多目標(biāo)智能優(yōu)化算法及其天線設(shè)計應(yīng)用的研究[D];南京郵電大學(xué);2016年
2 李東慧;分工搜索演化算法及其應(yīng)用的研究[D];南京郵電大學(xué);2011年
3 章春芳;自適應(yīng)的并行蟻群算法及其應(yīng)用[D];揚州大學(xué);2006年
,本文編號:2231463
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2231463.html