天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于TensorFlow的卷積神經(jīng)網(wǎng)絡的應用研究

發(fā)布時間:2018-09-07 10:04
【摘要】:隨著大數(shù)據(jù)時代的到來,計算機硬件性能的不斷提升,深度學習作為新興的機器學習方法被用于有效地分析和處理這些數(shù)據(jù)。深度學習的核心思想是采用一系列的非線性變換,從原始數(shù)據(jù)中提取由低層到高層、由一般到特定語義的特征。而卷積神經(jīng)網(wǎng)絡尤其擅長在高維復雜數(shù)據(jù)結構中提取有效特征。正是這種豐富的特征表達能力使得卷積神經(jīng)網(wǎng)絡在圖像識別與分類、目標檢測與定位、人機博弈、無人駕駛等領域應用廣泛。TensorFlow是谷歌公司開源的深度學習平臺,也目前最受歡迎的機器學習框架。本文基于TensorFlow研究卷積神經(jīng)網(wǎng)絡,并在此平臺基礎之上實現(xiàn)卷積神經(jīng)網(wǎng)絡模型,解決實際問題。具體工作如下:首先,對深度學習的基本方法進行了介紹,重點研究了卷積神經(jīng)網(wǎng)絡結構中的卷積層和池化層,并且搭建了TensorFlow實驗平臺,深刻理解TensorFlow的工作原理及框架結構。其次,具體分析了 LeNet-5模型結構,使用兩個卷積層加一個全連接層構建一個簡單的卷積神經(jīng)網(wǎng)絡解決手寫體數(shù)字識別問題,改進后的LeNet-5模型在MNIST數(shù)據(jù)集上取得99.3%的準確率。最后,對Alex描述的cuda-convnet模型使用了一些新的技巧進行改進,主要是對weights進行了 L2的正則化、對圖片進行了翻轉隨機剪裁等數(shù)據(jù)增強以制造更多的樣本、在每個卷積-最大池化層后面使用了 LRN層以增強模型的泛化能力。改進后的卷積神經(jīng)網(wǎng)絡在更復雜更豐富的CIFAR-10數(shù)據(jù)集上取得約88%的準確率。
[Abstract]:With the arrival of big data era and the continuous improvement of computer hardware performance, depth learning as a new machine learning method is used to analyze and process these data effectively. The core idea of depth learning is to use a series of nonlinear transformations to extract features from lower level to higher level and from general to specific semantics from the original data. Convolutional neural networks are especially good at extracting effective features from high-dimensional complex data structures. It is this rich feature expression ability that makes convolutional neural network widely used in image recognition and classification, target detection and location, man-machine game, driverless and other fields. Tensor flow is Google's open source in-depth learning platform. Also currently the most popular machine learning framework. In this paper, the convolution neural network is studied based on TensorFlow, and the model of convolutional neural network is implemented on this platform to solve the practical problems. The main work is as follows: firstly, the basic method of deep learning is introduced, and the convolution layer and pool layer in the network structure of convolutional neural network are studied, and the TensorFlow experimental platform is built to deeply understand the working principle and frame structure of TensorFlow. Secondly, the structure of LeNet-5 model is analyzed in detail. A simple convolution neural network is constructed by using two convolution layers and a full join layer to solve the problem of handwritten digit recognition. The improved LeNet-5 model achieves 99.3% accuracy on MNIST data set. Finally, the cuda-convnet model described by Alex is improved with some new techniques, mainly the regularization of L2 for weights and the enhancement of image data such as flipping random clipping to create more samples. The LRN layer is used after each convolution-maximum pool layer to enhance the generalization of the model. The improved convolution neural network achieves an accuracy of about 88% on the more complex and abundant CIFAR-10 datasets.
【學位授予單位】:華中師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41;TP18

【參考文獻】

相關博士學位論文 前7條

1 戶保田;基于深度神經(jīng)網(wǎng)絡的文本表示及其應用[D];哈爾濱工業(yè)大學;2016年

2 馮子勇;基于深度學習的圖像特征學習和分類方法的研究及應用[D];華南理工大學;2016年

3 吳翔;基于機器視覺的害蟲識別方法研究[D];浙江大學;2016年

4 蘇向東;基于深度學習和知識策略的蒙古文古籍識別研究[D];內(nèi)蒙古大學;2016年

5 謝凌曦;基于局部特征的圖像表示模型理論與實踐[D];清華大學;2015年

6 張清辰;面向大數(shù)據(jù)特征學習的深度計算模型研究[D];大連理工大學;2015年

7 馮方向;基于深度學習的跨模態(tài)檢索研究[D];北京郵電大學;2015年

相關碩士學位論文 前5條

1 吳正文;卷積神經(jīng)網(wǎng)絡在圖像分類中的應用研究[D];電子科技大學;2015年

2 張勇;深度卷積神經(jīng)網(wǎng)絡在車牌和人臉檢測領域的應用研究[D];鄭州大學;2015年

3 何西麟;基于深度學習的手寫體字符識別研究與實現(xiàn)[D];中山大學;2015年

4 陳先昌;基于卷積神經(jīng)網(wǎng)絡的深度學習算法與應用研究[D];浙江工商大學;2014年

5 許可;卷積神經(jīng)網(wǎng)絡在圖像識別上的應用的研究[D];浙江大學;2012年



本文編號:2227939

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2227939.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶5e2a1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com