天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于卷積神經(jīng)網(wǎng)絡(luò)的電商數(shù)據(jù)深度挖掘

發(fā)布時(shí)間:2018-08-23 08:01
【摘要】:近年來,快速發(fā)展的電子商務(wù)為人們帶來了極大的便利。電商所處的商業(yè)環(huán)境相較傳統(tǒng)商業(yè)環(huán)境具有更強(qiáng)的動(dòng)態(tài)性與復(fù)雜性,這帶來了諸多挑戰(zhàn),而數(shù)據(jù)挖掘技術(shù)可以幫助人們更好地應(yīng)對(duì)這些挑戰(zhàn)。傳統(tǒng)數(shù)據(jù)挖掘技術(shù)無法有效地利用電商中的海量數(shù)據(jù),它依賴于耗時(shí)、耗力的特征工程,得到的模型可擴(kuò)展性差。深度學(xué)習(xí)技術(shù)可以有效地利用大量數(shù)據(jù),且可以實(shí)現(xiàn)自動(dòng)化地從原始數(shù)據(jù)中抽取有效特征,具有更高的可用性。在本文中,我們利用深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)對(duì).電商數(shù)據(jù)進(jìn)行挖掘,針對(duì)商品搭配推薦與商品銷量預(yù)測(cè)這兩個(gè)方面,設(shè)計(jì)了一系列有效的算法及優(yōu)化方法。具體而言,本文的主要研究?jī)?nèi)容包括:首先,商品搭配具有廣泛應(yīng)用,如基于用戶已購買商品向其推薦可能購買的商品。傳統(tǒng)方法通過分析商品歷史共同購買記錄生成搭配信息,它無法為沒有歷史購買記錄的新商品生成搭配信息。在本文中,我們觀察到商家會(huì)把商品所有重要屬性信息放在標(biāo)題中,于是設(shè)計(jì)了一個(gè)對(duì)拍卷積神經(jīng)網(wǎng)絡(luò)對(duì)兩個(gè)商品標(biāo)題組成的短文本對(duì)建模,將文本信息從原始的符號(hào)空間映射到特定的樣式空間,進(jìn)而在樣式空間中計(jì)算兩個(gè)商品間的搭配程度。其次,商品銷量預(yù)測(cè)對(duì)商業(yè)決策至關(guān)重要,它有助于商家對(duì)人力、物力與倉儲(chǔ)等諸多方面做出更優(yōu)的管理;跁r(shí)序分析的方法僅能對(duì)那些銷量變化規(guī)律明顯的商品做出準(zhǔn)確預(yù)測(cè);雖然傳統(tǒng)機(jī)器學(xué)習(xí)方法可以通過特征工程來考慮更多信息,進(jìn)而取得更高的準(zhǔn)確性,但特征工程限制了模型的可擴(kuò)展性。在本文中,我們?cè)O(shè)計(jì)了一個(gè)新穎的模型,它可以從原始結(jié)構(gòu)化時(shí)序數(shù)據(jù)中通過卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)化提取有效特征,并進(jìn)一步利用這些特征實(shí)現(xiàn)商品銷量預(yù)測(cè)。最后,在真實(shí)電商數(shù)據(jù)集上驗(yàn)證了我們提出算法的有效性。
[Abstract]:In recent years, the rapid development of electronic commerce has brought great convenience to people. The business environment of e-commerce is more dynamic and complex than the traditional business environment, which brings many challenges, and data mining technology can help people to cope with these challenges better. The traditional data mining technology can not make effective use of the massive data in the ecoquotient. It relies on the time-consuming and labor-intensive feature engineering, and the model has poor scalability. Depth learning technology can effectively utilize a large amount of data, and can automatically extract effective features from raw data, so it has higher availability. In this paper, we use convolution neural network pairs in deep learning. Based on the data mining, a series of effective algorithms and optimization methods are designed in this paper. Specifically, the main research contents of this paper are as follows: first, commodity collocation has a wide range of applications, such as based on the user has already purchased goods to recommend the goods they may buy. The traditional method can not generate collocation information for new commodities without historical purchase records by analyzing the historical purchase records of commodities together to generate collocation information. In this paper, we observe that the merchant will put all the important attribute information of the product in the title, so we design a short text pair model of the two commodity titles, which is composed of two commodity titles, and a convolution neural network is designed. The text information is mapped from the original symbol space to the specific style space, and the collocation degree between the two items is calculated in the style space. Secondly, the forecast of commodity sales is very important to business decision, it helps merchants to make better management of manpower, material resources and storage and so on. The method based on time series analysis can only accurately predict those commodities whose sales change is obvious; although the traditional machine learning method can take more information into account through feature engineering, and then achieve higher accuracy. However, feature engineering limits the extensibility of the model. In this paper, we design a novel model, which can automatically extract valid features from the original structured temporal data by convolution neural network, and further utilize these features to predict the sales volume of goods. Finally, the validity of the proposed algorithm is verified on the real data set.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TP311.13

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊曉帥 ,付玫;神經(jīng)網(wǎng)絡(luò)技術(shù)讓管理更輕松[J];軟件世界;2000年11期

2 云中客;新的神經(jīng)網(wǎng)絡(luò)來自于仿生學(xué)[J];物理;2001年10期

3 唐春明,高協(xié)平;進(jìn)化神經(jīng)網(wǎng)絡(luò)的研究進(jìn)展[J];系統(tǒng)工程與電子技術(shù);2001年10期

4 李智;一種基于神經(jīng)網(wǎng)絡(luò)的煤炭調(diào)運(yùn)優(yōu)化方法[J];長(zhǎng)沙鐵道學(xué)院學(xué)報(bào);2003年02期

5 程科,王士同,楊靜宇;新型模糊形態(tài)神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];計(jì)算機(jī)工程與應(yīng)用;2004年21期

6 王凡,孟立凡;關(guān)于使用神經(jīng)網(wǎng)絡(luò)推定操作者疲勞的研究[J];人類工效學(xué);2004年03期

7 周麗暉;從統(tǒng)計(jì)角度看神經(jīng)網(wǎng)絡(luò)[J];統(tǒng)計(jì)教育;2005年06期

8 趙奇 ,劉開第 ,龐彥軍;灰色補(bǔ)償神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];微計(jì)算機(jī)信息;2005年14期

9 袁婷;;神經(jīng)網(wǎng)絡(luò)在股票市場(chǎng)預(yù)測(cè)中的應(yīng)用[J];軟件導(dǎo)刊;2006年05期

10 尚晉;楊有;;從神經(jīng)網(wǎng)絡(luò)的過去談科學(xué)發(fā)展觀[J];重慶三峽學(xué)院學(xué)報(bào);2006年03期

相關(guān)會(huì)議論文 前10條

1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡(luò)的混沌性[A];1996中國控制與決策學(xué)術(shù)年會(huì)論文集[C];1996年

2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡(luò)[A];2003年中國智能自動(dòng)化會(huì)議論文集(上冊(cè))[C];2003年

3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡(luò)和簡(jiǎn)單規(guī)劃的識(shí)別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年

4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

5 鐘義信;;知識(shí)論:神經(jīng)網(wǎng)絡(luò)的新機(jī)遇——紀(jì)念中國神經(jīng)網(wǎng)絡(luò)10周年[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

6 許進(jìn);保錚;;神經(jīng)網(wǎng)絡(luò)與圖論[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預(yù)報(bào)產(chǎn)品的神經(jīng)網(wǎng)絡(luò)釋用預(yù)報(bào)應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年

8 田金亭;;神經(jīng)網(wǎng)絡(luò)在中學(xué)生創(chuàng)造力評(píng)估中的應(yīng)用[A];第十二屆全國心理學(xué)學(xué)術(shù)大會(huì)論文摘要集[C];2009年

9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡(luò)的混沌特性研究[A];2009年中國智能自動(dòng)化會(huì)議論文集(第七分冊(cè))[南京理工大學(xué)學(xué)報(bào)(增刊)][C];2009年

10 張廣遠(yuǎn);萬強(qiáng);曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷方法研究[A];第十二屆全國設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2010年

相關(guān)重要報(bào)紙文章 前10條

1 美國明尼蘇達(dá)大學(xué)社會(huì)學(xué)博士 密西西比州立大學(xué)國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護(hù)好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國教師報(bào);2014年

2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計(jì)算機(jī)世界;2001年

3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國紡織報(bào);2003年

4 中國科技大學(xué)計(jì)算機(jī)系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計(jì)算機(jī)世界;2003年

5 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復(fù)雜工藝“黑箱”[N];解放日?qǐng)?bào);2007年

6 本報(bào)記者 劉霞;美用DNA制造出首個(gè)人造神經(jīng)網(wǎng)絡(luò)[N];科技日?qǐng)?bào);2011年

7 健康時(shí)報(bào)特約記者  張獻(xiàn)懷;干細(xì)胞移植:修復(fù)受損的神經(jīng)網(wǎng)絡(luò)[N];健康時(shí)報(bào);2006年

8 劉力;我半導(dǎo)體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達(dá)國際先進(jìn)水平[N];中國電子報(bào);2001年

9 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導(dǎo)報(bào);2002年

10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡(luò)應(yīng)用研究通過鑒定[N];中國船舶報(bào);2006年

相關(guān)博士學(xué)位論文 前10條

1 楊旭華;神經(jīng)網(wǎng)絡(luò)及其在控制中的應(yīng)用研究[D];浙江大學(xué);2004年

2 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無線通信算法研究[D];山東大學(xué);2015年

3 石艷超;憶阻神經(jīng)網(wǎng)絡(luò)的混沌性及幾類時(shí)滯神經(jīng)網(wǎng)絡(luò)的同步研究[D];電子科技大學(xué);2014年

4 王新迎;基于隨機(jī)映射神經(jīng)網(wǎng)絡(luò)的多元時(shí)間序列預(yù)測(cè)方法研究[D];大連理工大學(xué);2015年

5 付愛民;極速學(xué)習(xí)機(jī)的訓(xùn)練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學(xué);2015年

6 李輝;基于粒計(jì)算的神經(jīng)網(wǎng)絡(luò)及集成方法研究[D];中國礦業(yè)大學(xué);2015年

7 王衛(wèi)蘋;復(fù)雜網(wǎng)絡(luò)幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學(xué);2015年

8 張海軍;基于云計(jì)算的神經(jīng)網(wǎng)絡(luò)并行實(shí)現(xiàn)及其學(xué)習(xí)方法研究[D];華南理工大學(xué);2015年

9 李艷晴;風(fēng)速時(shí)間序列預(yù)測(cè)算法研究[D];北京科技大學(xué);2016年

10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡(luò)與高校效益預(yù)測(cè)的研究[D];華南理工大學(xué);2015年

2 賈文靜;基于改進(jìn)型神經(jīng)網(wǎng)絡(luò)的風(fēng)力發(fā)電系統(tǒng)預(yù)測(cè)及控制研究[D];燕山大學(xué);2015年

3 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學(xué);2015年

4 陳彥至;神經(jīng)網(wǎng)絡(luò)降維算法研究與應(yīng)用[D];華南理工大學(xué);2015年

5 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡(luò)研究[D];西南大學(xué);2015年

6 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡(luò)的遙感圖像分類研究[D];昆明理工大學(xué);2015年

7 李志杰;基于神經(jīng)網(wǎng)絡(luò)的上證指數(shù)預(yù)測(cè)研究[D];華南理工大學(xué);2015年

8 陳少吉;基于神經(jīng)網(wǎng)絡(luò)血壓預(yù)測(cè)研究與系統(tǒng)實(shí)現(xiàn)[D];華南理工大學(xué);2015年

9 張韜;幾類時(shí)滯神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析[D];渤海大學(xué);2015年

10 邵雪瑩;幾類時(shí)滯不確定神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[D];渤海大學(xué);2015年



本文編號(hào):2198410

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2198410.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶034e4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com