天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

四類分數(shù)階時滯非線性系統(tǒng)穩(wěn)定性研究

發(fā)布時間:2018-08-22 12:15
【摘要】:近些年,隨著計算機技術和交叉學科的發(fā)展,分數(shù)階微積分在理論和應用方面取得巨大進步。分數(shù)階微積分作為整數(shù)階微積分在任意階次上的推廣,具有非局限性特性,非常適合描述那些具有記憶和遺傳特性的材料和過程,被廣泛用于科技和工程領域,例如多孔材料中的流體流動、反常擴散、粘彈性材料中的聲波傳播、自相似結構的動力學、信號處理、金融理論、保密通信和生物系統(tǒng)電導等。分數(shù)階微積分已經(jīng)成為當下的研究熱點領域。本文主要研究了一種改進的預估-校正算法、分數(shù)階單時滯復Lorenz系統(tǒng)的動力學分析及其自時滯同步及分數(shù)階多時滯非線性系統(tǒng)的穩(wěn)定性控制等問題。本文的主要內(nèi)容和創(chuàng)新之處如下:1.改進的預估-校正算法通過對預估-校正算法的預估部分作出改進,提出了一種改進的預估-校正算法。該算法通過提高預估部分的計算精度,來提高整體算法的計算精度。此外,利用MATLAB數(shù)值仿真工具分析了三個數(shù)值仿真實例,通過與預估-校正算法比較,體現(xiàn)了改進的預估-校正算法在計算精度上的優(yōu)越性。2.分數(shù)階單時滯復Lorenz系統(tǒng)的動力學行為及其自時滯同步通過相圖法和最大Lyapunov指數(shù)法,分析了分數(shù)階單時滯復Lorenz系統(tǒng)的動力學行為。在這部分,我們通過固定系統(tǒng)階數(shù),增加時滯項系數(shù),發(fā)現(xiàn)分數(shù)階單時滯復Lorenz系統(tǒng)具有豐富的動力學行為。此外通過構造反饋控制器,實現(xiàn)了分數(shù)階單時滯復Lorenz系統(tǒng)的自時滯同步。利用MATLAB數(shù)值仿真工具做了數(shù)值仿真,驗證了所得結論的有效性和可行性。3.分數(shù)階多時滯非線性系統(tǒng)的穩(wěn)定性控制基于分數(shù)階Lyapunov直接方法和分數(shù)階時滯非線性系統(tǒng)的穩(wěn)定性理論,提出了一種通過構造反饋控制器實現(xiàn)分數(shù)階多時滯非線性系統(tǒng)穩(wěn)定性控制的方法。不同于已有的工作,該方法中,反饋控制器為線性反饋控制器,且只涉及系統(tǒng)當前狀態(tài)變量,與時滯項無關,結構簡單,易于工程實現(xiàn)。最后將該方法應用于三個典型的分數(shù)階多時滯非線性受控系統(tǒng),通過MATLAB數(shù)值仿真工具,驗證了所得結果的有效性與可行性。
[Abstract]:In recent years, with the development of computer technology and interdiscipline, fractional calculus has made great progress in theory and application. Fractional calculus, as a generalization of integral order calculus at any order, has the characteristics of no limitation and is very suitable for describing materials and processes with memory and genetic properties, and is widely used in science, technology and engineering. For example, fluid flow in porous materials, anomalous diffusion, acoustic propagation in viscoelastic materials, dynamics of self-similar structures, signal processing, financial theory, secure communications and biological system conductance. Fractional calculus has become a hot research field. In this paper, an improved predictor-correction algorithm, dynamic analysis of fractional single-delay complex Lorenz systems and stability control of self-delay synchronization and fractional multi-delay nonlinear systems are studied. The main contents and innovations of this paper are as follows: 1. An improved predictor-correction algorithm is proposed by improving the prediction part of the predictor-correction algorithm. The algorithm improves the accuracy of the whole algorithm by improving the accuracy of the prediction part. In addition, three numerical simulation examples are analyzed by using the MATLAB numerical simulation tool. By comparing with the predictor-correction algorithm, the superiority of the improved predictor-correction algorithm in the calculation accuracy is demonstrated. The dynamic behavior of fractional single-delay complex Lorenz system and its self-delay synchronization by phase diagram method and maximum Lyapunov exponent method are analyzed. The dynamic behavior of fractional single-delay complex Lorenz system is analyzed. In this part, we find that fractional single-delay complex Lorenz systems have rich dynamic behavior by increasing the coefficients of delay terms by the fixed order of the system. In addition, a feedback controller is constructed to realize the self-delay synchronization of fractional single-delay complex Lorenz systems. The effectiveness and feasibility of the conclusions are verified by using the MATLAB numerical simulation tool. The stability control of fractional multi-delay nonlinear systems is based on the fractional Lyapunov direct method and the stability theory of fractional time-delay nonlinear systems. In this paper, a feedback controller is proposed to control the stability of fractional multi-delay nonlinear systems. In this method, the feedback controller is a linear feedback controller, which only involves the current state variables of the system, is independent of the time-delay term, and is simple in structure and easy to be implemented in engineering. Finally, the method is applied to three typical fractional multi-delay nonlinear controlled systems. The validity and feasibility of the obtained results are verified by MATLAB numerical simulation tool.
【學位授予單位】:重慶郵電大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP13

【參考文獻】

相關期刊論文 前3條

1 張芳芳;劉樹堂;余衛(wèi)勇;;時滯復Lorenz混沌系統(tǒng)特性及其自時滯同步[J];物理學報;2013年22期

2 王震;黃霞;李寧;宋曉娜;;Image encryption based on a delayed fractional-order chaotic logistic system[J];Chinese Physics B;2012年05期

3 沈淑君,劉發(fā)旺;解分數(shù)階Bagley-Torvik方程的一種計算有效的數(shù)值方法[J];廈門大學學報(自然科學版);2004年03期

,

本文編號:2197074

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2197074.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶b182e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com