無線傳感網(wǎng)中模糊邏輯分簇和數(shù)據(jù)融合技術(shù)研究
[Abstract]:Wireless sensor network (WSN) is composed of a large number of wireless nodes with sensing, storage and communication capabilities, which are distributed in a specific area. WSNs have a broad application prospect. For example, used in forest fire prevention, intelligent community, intelligent wear, railway station safety monitoring and so on. However, due to the limitation of WSN itself, nodes need to fuse the collected data to reduce energy consumption and improve the accuracy of data. Therefore, wireless sensor network data fusion technology has become one of the focus of research. In this paper, energy saving is taken as the basic requirement, and the main goal of this paper is to improve the accuracy and real-time of data fusion. The innovative research on clustering technology and data fusion technology has been done. The specific contents of this paper are as follows: firstly, this paper summarizes the background, architecture, network characteristics and the key technology of wireless sensor network data fusion, and classifies the data fusion algorithm. The performance and limitation are analyzed in depth. Secondly, by analyzing the existing clustering techniques, a new fuzzy nonuniform clustering algorithm, (Energy Enhanced Unequal Fuzzy Clustering algorithm, is proposed. By calculating the relative density of the node and the distance from the base station, the algorithm randomly selects the temporary cluster head, and then introduces the fuzzy theory to estimate the competition radius, and takes the relative density and the competition radius together as the reference variables for the election of the final cluster head. In clustering, the cluster heads are selected according to the distance and cost, thus avoiding the "hot zone" better and balancing the energy consumption. Thirdly, this paper applies fuzzy logic and matrix weighting to data fusion technology. Considering the requirement of data accuracy and real-time in information collection and transmission, a fuzzy weighted data fusion algorithm (Fuzzy Weighted Algorithm for Data fusion FWADF is proposed. Based on clustering model and considering the influence of external factors, the received data are fused in cluster head and base station on the basis of calculating credibility, so as to provide accurate and real-time data information for users. Finally, the simulation software NS-2 (Network Simulator-Version 2 / NS-2) is used to simulate the algorithm. The experimental results show that the proposed fuzzy non-uniform clustering algorithm balances node energy and avoids "hot zone", and the proposed fuzzy weighted data fusion algorithm improves the accuracy and real-time performance of the data. The two extend the life cycle of the network together.
【學(xué)位授予單位】:遼寧大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212.9;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 陳慧杰;韓江洪;劉磊;;無線傳感器網(wǎng)絡(luò)中自然能收集分簇路由算法研究[J];計算機(jī)工程;2016年03期
2 曾振東;陳霄;孫波;吳樹鑫;;基于占空比控制和時延保證的傳感器網(wǎng)絡(luò)隊(duì)列管理算法[J];計算機(jī)應(yīng)用;2015年05期
3 劉唐;楊進(jìn);;非均勻分布異構(gòu)傳感器網(wǎng)絡(luò)動態(tài)多簇頭成簇算法[J];小型微型計算機(jī)系統(tǒng);2013年05期
4 朱達(dá)榮;歐劍;閔杰;;無線傳感器網(wǎng)絡(luò)測距定位算法改進(jìn)與分析[J];安徽大學(xué)學(xué)報(自然科學(xué)版);2011年05期
5 盧建剛;樂紅兵;;基于節(jié)點(diǎn)相對密度的無線傳感器網(wǎng)絡(luò)成簇算法[J];傳感技術(shù)學(xué)報;2011年04期
6 李德英;陳文萍;霍瑞龍;劉東升;;無線傳感器網(wǎng)絡(luò)能量高效綜述[J];計算機(jī)科學(xué);2008年11期
7 卿利;朱清新;王明文;;異構(gòu)傳感器網(wǎng)絡(luò)的分布式能量有效成簇算法[J];軟件學(xué)報;2006年03期
相關(guān)碩士學(xué)位論文 前4條
1 周婭;時間同步技術(shù)在無線傳感網(wǎng)中的應(yīng)用研究[D];安徽工程大學(xué);2015年
2 孔玉靜;基于神經(jīng)網(wǎng)絡(luò)的無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法研究[D];浙江工商大學(xué);2013年
3 敖邦乾;無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法的研究[D];中南大學(xué);2011年
4 田洋;無線傳感器網(wǎng)絡(luò)決策層數(shù)據(jù)融合的研究[D];遼寧大學(xué);2011年
,本文編號:2173855
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2173855.html