天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

GMR傳感器在無損檢測中的研究與應用

發(fā)布時間:2018-08-01 17:20
【摘要】:在飛機、船舶、汽車等建造工業(yè)領(lǐng)域生產(chǎn)中,無損檢測作為其關(guān)鍵部位零器件缺損情況檢測最重要的手段之一,無損檢測技術(shù)在探測關(guān)鍵部位零器件缺陷、消除潛在的安全隱患、保障設備的安全運行等方面發(fā)揮著極其重要的作用。其中,如何提高檢測精度是目前亟需解決的一大難題。本文將以此為背景,應用無損電渦流檢測原理,引入高靈敏度的巨磁電阻(GMR)芯片,設計了一款新型的無損探測系統(tǒng)。本文首先對電渦流探頭的結(jié)構(gòu)進行了研究,傳統(tǒng)的線圈式探頭其靈敏度隨著工作頻率的降低而減少,現(xiàn)有的基于傳感器芯片的電渦流探頭,內(nèi)部采用一個單一的激勵線圈,當通入交流電時激發(fā)的磁場會對渦流信號造成干擾,進而影響缺陷檢測。鑒于此,本文對探頭的結(jié)構(gòu)作了改進即在激勵線圈的基礎(chǔ)上再額外增加一個消除線圈,以此降低激勵場對渦流信號的干擾,從而提高檢測精度。本文利用有限元軟件ANSOFT MAXWELL模擬仿真了一個無損檢測模型,在其中渦流檢測探頭的結(jié)構(gòu)上增加了一個消除線圈,通過仿真結(jié)果得出:相比于常規(guī)式只有單一激勵線圈的探頭,新型的GMR探頭采用了雙線圈,且線圈中心芯片放置處磁場變化量更大而周圍磁場較弱。隨后實物制作了這款具有高信噪比的巨磁電阻(GMR)電渦流探頭。其次本文還針對新型的探頭設計并改進了一個無損檢測系統(tǒng),系統(tǒng)設計主要分為硬件電路和軟件兩個部分,其中硬件電路設計主要有正弦波發(fā)生電路、功率放大電路以及信號調(diào)理電路。正弦波發(fā)生電路采用單片機控制DDS芯片的方式來產(chǎn)生一定頻率的正弦波,信號調(diào)理電路則采用鎖相放大、放大和低通濾波的方式對探頭的原始輸出信號作相應的調(diào)理;軟件方面集中在單片機編程控制芯片產(chǎn)生正弦波和后續(xù)數(shù)據(jù)處理上利用數(shù)據(jù)采集卡和LABVIEW編程實現(xiàn)數(shù)據(jù)信息的實時處理和觀測。通過后期PCB板的調(diào)試,系統(tǒng)中各模塊能發(fā)揮各自良好的功能。最后對以上所設計的無損檢測系統(tǒng)進行了試件缺陷檢測,通過多組實驗數(shù)據(jù)的對比得出結(jié)論:新型結(jié)構(gòu)的GMR探頭能夠檢測試件中的缺陷并且檢測精度較高。
[Abstract]:Nondestructive testing (NDT) is one of the most important methods to detect the defect of zero devices in the key parts of aircraft, ships, automobiles and other construction industries, and the technology of nondestructive testing is used to detect the defects of zero devices in the key parts. Eliminating potential hidden dangers and ensuring the safe operation of equipment play an extremely important role. Among them, how to improve the detection accuracy is a big problem that needs to be solved. In this paper, a new nondestructive detection system is designed based on the principle of nondestructive eddy current testing and the introduction of a high sensitivity Giant Magnetoresistance (GMR) (GMR) chip. In this paper, the structure of the eddy current probe is studied. The sensitivity of the traditional coil probe decreases with the decrease of the working frequency. A single exciting coil is used in the existing eddy current probe based on the sensor chip. The magnetic field excited by the AC current will interfere with the eddy current signal and affect the defect detection. In view of this, the structure of the probe is improved, that is, an additional elimination coil is added on the basis of the exciting coil to reduce the disturbance of the excitation field to the eddy current signal, thus improving the detection accuracy. In this paper, a nondestructive testing model is simulated by using the finite element software ANSOFT MAXWELL, in which an elimination coil is added to the structure of the eddy current detection probe. The simulation results show that compared with the conventional probe with only a single excitation coil, The new GMR probe uses double coils, and the magnetic field in the central chip of the coil is much larger and the magnetic field around it is weaker. Subsequently, the GMR (GMR) eddy current probe with high signal-to-noise ratio was fabricated. Secondly, this paper also designs and improves a nondestructive testing system for the new probe. The system design is mainly divided into two parts: hardware circuit and software, in which the hardware circuit design mainly includes sine wave generation circuit. Power amplifier circuit and signal conditioning circuit. The sinusoidal wave generating circuit uses the single chip computer to control the DDS chip to produce the sine wave of a certain frequency, and the signal conditioning circuit uses the phase-locked amplification, amplification and low-pass filter to adjust the original output signal of the probe. The software is focused on the sine wave generation and subsequent data processing on the single chip microcomputer programming control chip. The data acquisition card and LABVIEW program are used to realize the real-time processing and observation of the data information. Through the later debugging of PCB board, each module in the system can play its own good function. Finally, the defect detection of the NDT system designed above is carried out, and the conclusion is drawn through the comparison of many groups of experimental data: the new structure GMR probe can detect the defects in the specimen and the detection accuracy is high.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP212;TP274

【參考文獻】

相關(guān)期刊論文 前8條

1 夏均鳳;;無損檢測技術(shù)及其在汽車零部件制造過程中應用初探[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2012年01期

2 張玉華;孫慧賢;羅飛路;;渦流探頭提離效應的理論分析與實驗研究[J];電機與控制學報;2009年02期

3 張玉華;孫慧賢;羅飛路;曹雄恒;;一種用于盤孔裂紋檢測的差動式渦流探頭的設計與實現(xiàn)[J];傳感技術(shù)學報;2008年06期

4 孫朝明,徐彥霖,劉寶;有限元方法在渦流傳感器設計中的應用[J];傳感器技術(shù);2005年10期

5 田大強,蔣平,唐國慶;有源濾波器中數(shù)字低通濾波器設計及其實現(xiàn)[J];電工電能新技術(shù);2003年03期

6 耿榮生;新千年的無損檢測技術(shù)——從羅馬會議看無損檢測技術(shù)的發(fā)展方向[J];無損檢測;2001年01期

7 紀宗南;儀表放大器及其應用(六)低功耗儀表放大器的應用[J];國外電子元器件;1998年10期

8 雷銀照,馬信山;放置式線圈阻抗積分限的確定[J];計量學報;1995年02期

相關(guān)博士學位論文 前3條

1 胡祥超;集成渦流無損檢測系統(tǒng)設計與關(guān)鍵技術(shù)研究[D];國防科學技術(shù)大學;2012年

2 范孟豹;多層導電結(jié)構(gòu)電渦流檢測的解析建模研究[D];浙江大學;2009年

3 黃平捷;多層導電結(jié)構(gòu)厚度與缺陷電渦流檢測若干關(guān)鍵技術(shù)研究[D];浙江大學;2004年

相關(guān)碩士學位論文 前4條

1 高揚華;基于GMR傳感器的電渦流檢測系統(tǒng)開發(fā)及深層缺陷檢測的可靠性研究[D];浙江大學;2010年

2 賀光琳;電渦流檢測系統(tǒng)開發(fā)及缺陷反演算法研究[D];浙江大學;2008年

3 龔翔;電渦流檢測系統(tǒng)開發(fā)及正向問題研究[D];浙江大學;2008年

4 武海鑫;電渦流檢測的正向問題研究及檢測系統(tǒng)的通信設計[D];浙江大學;2007年

,

本文編號:2158290

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2158290.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0accc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com