云計(jì)算任務(wù)調(diào)度的粒子群算法
[Abstract]:Cloud computing technology has become one of the most popular network technologies. The rise of cloud computing technology is not only the product of the rapid development of information technology, but also the embodiment of human society to put forward higher requirements for life and work. Cloud computing technology is a virtual concept of personal computers, but through a third party to achieve computer storage and computing tasks, and then through on-demand payment to the public to use. Therefore, how to quickly and efficiently schedule and use huge resources in third-party data centers has become the key to the development of cloud computing technology. First of all, particle swarm optimization algorithm is successfully applied to cloud computing task scheduling. In order to avoid the defect that standard particle swarm optimization algorithm is easy to fall into local optimum, Chebyshev chaos perturbation strategy is introduced. The PSO algorithm is able to jump out of the local optimum in the later stage of operation by perturbation strategy, so that the PSO algorithm can get better global optimization results. The experimental results show that the improved particle swarm optimization algorithm can obtain better scheduling results in a shorter time than other traditional algorithms by using cloud computing simulation platform Cloudsim. Secondly, the Chebyshev chaos perturbation strategy is introduced, and the dynamic inertial weight strategy is added, which makes the improved particle swarm optimization algorithm have the ability to jump out of the local optimum. The ability of global search and local search can be adjusted dynamically according to the actual problem. The improved algorithm is applied to the task scheduling of cloud computing and verified by the cloud computing simulation platform Cloudsim. The experimental results show that the improved algorithm has better scheduling results than the above improved algorithm and the time used is shorter. Finally, the multi-objective particle swarm optimization algorithm is studied and applied to cloud computing task scheduling. By introducing dynamic inertial weight strategy and adaptive evolutionary learning strategy, the multi-objective particle swarm optimization algorithm is improved. By using cloud computing simulation platform Cloudsim, the experimental results show that the improved multi-objective particle swarm optimization algorithm can obtain better scheduling results in a short time in multi-objective cloud computing task scheduling.
【學(xué)位授予單位】:北方民族大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張佩云;鳳麒;;一種云計(jì)算環(huán)境下的工作流雙向調(diào)度方法[J];計(jì)算機(jī)科學(xué);2015年S2期
2 吳麗;余文春;;基于多服務(wù)器最優(yōu)配置的云計(jì)算利潤(rùn)最大化技術(shù)研究[J];計(jì)算機(jī)應(yīng)用研究;2015年01期
3 王建林;吳佳歡;張超然;趙利強(qiáng);于濤;;基于自適應(yīng)進(jìn)化學(xué)習(xí)的約束多目標(biāo)粒子群優(yōu)化算法[J];控制與決策;2014年10期
4 羅亮;吳文峻;張飛;;面向云計(jì)算數(shù)據(jù)中心的能耗建模方法[J];軟件學(xué)報(bào);2014年07期
5 劉川意;林杰;唐博;;面向云計(jì)算模式運(yùn)行環(huán)境可信性動(dòng)態(tài)驗(yàn)證機(jī)制[J];軟件學(xué)報(bào);2014年03期
6 任昱;李青榮;;基于VMware vSphere虛擬化資源管理平臺(tái)研究[J];計(jì)算機(jī)應(yīng)用與軟件;2012年05期
7 王晟;趙壁芳;;云計(jì)算中MapReduce技術(shù)研究[J];通信技術(shù);2011年12期
8 羅軍舟;金嘉暉;宋愛波;東方;;云計(jì)算:體系架構(gòu)與關(guān)鍵技術(shù)[J];通信學(xué)報(bào);2011年07期
9 華夏渝;鄭駿;胡文心;;基于云計(jì)算環(huán)境的蟻群優(yōu)化計(jì)算資源分配算法[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
10 陳康;鄭緯民;;云計(jì)算:系統(tǒng)實(shí)例與研究現(xiàn)狀[J];軟件學(xué)報(bào);2009年05期
,本文編號(hào):2152699
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2152699.html