天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于水平集的SAR遙感圖像分割的算法研究

發(fā)布時(shí)間:2018-07-26 13:23
【摘要】:合成孔徑雷達(dá)(SAR)是一種高分辨的微波遙感相干成像雷達(dá),在軍事和國(guó)民經(jīng)濟(jì)等各個(gè)領(lǐng)域中都有著非常重要的作用。SAR遙感圖像的分割是進(jìn)行SAR遙感圖像理解、解疑中基本且關(guān)鍵的技術(shù)之一。SAR遙感圖像分割的目的就是把目標(biāo)區(qū)域和背景區(qū)域分割開(kāi)來(lái),但由于SAR遙感圖像中含有大量乘性相干斑噪聲,且圖像區(qū)域灰度分布不均勻,使得SAR遙感圖像中目標(biāo)物體邊緣無(wú)法被精確定位,進(jìn)而很難實(shí)現(xiàn)對(duì)SAR遙感圖像精確且高效率的分割。如何快速而有效地實(shí)現(xiàn)SAR遙感圖像的分割,是目前亟待解決的一個(gè)難題。隨著SAR遙感圖像研究的發(fā)展,水平集模型以其對(duì)曲線(xiàn)拓?fù)浣Y(jié)構(gòu)變化的良好適應(yīng)能力和無(wú)需對(duì)噪聲預(yù)處理的特性,受到國(guó)內(nèi)外研究學(xué)者們的青睞。本文在總結(jié)和分析已有的基于水平集的SAR遙感圖像分割方法的基礎(chǔ)上,針對(duì)SAR遙感圖像所具有的大量乘性相干斑噪聲和灰度分布不均勻的特性,提出了兩種融合區(qū)域信息和邊緣梯度信息的水平集模型,對(duì)SAR遙感圖像進(jìn)行分割,主要工作如下:針對(duì)SAR遙感圖像中目標(biāo)邊緣模糊和對(duì)目標(biāo)邊緣定位不正確的問(wèn)題,提出了一種基于改進(jìn)C-V模型的高分辨率SAR遙感圖像的分割方法。該方法針對(duì)C-V模型不能分割灰度不均勻圖像的缺點(diǎn),以及該模型只利用區(qū)域信息而沒(méi)有利用邊緣梯度信息,從而造成分割后的目標(biāo)物體虛假邊緣較多的缺點(diǎn),本文利用SAR遙感圖像所特有的統(tǒng)計(jì)特性,提出了利用對(duì)均勻和不均勻區(qū)域都有很好擬合作用的G0分布函數(shù),對(duì)圖像進(jìn)行擬合,解決對(duì)灰度分布不均勻圖像分割不準(zhǔn)確的問(wèn)題,同時(shí)在C-V模型中引入改進(jìn)的邊緣指示函數(shù),此邊緣指示函數(shù)能夠很好地去除SAR遙感圖像中具有的乘性噪聲、定位目標(biāo)的邊界、控制曲線(xiàn)的演化速率以及避免水平集函數(shù)的重新初始化。針對(duì)SAR遙感圖像存在的灰度分布不均勻現(xiàn)象,提出了一種基于改進(jìn)LIF模型的SAR遙感圖像的分割方法。該方法是在LIF模型能較好地分割灰度不均勻圖像的基礎(chǔ)上,針對(duì)局部圖像擬合(LIF)模型存在的對(duì)噪聲敏感,以及在演化過(guò)程中易陷入局部極小值和邊緣定位不準(zhǔn)確的缺點(diǎn),引入截?cái)嗟幕诰(xiàn)性最小均方誤差的指數(shù)平滑濾波器來(lái)提高分割精度,同時(shí)引入結(jié)合了模糊C均值(FCM)和無(wú)限對(duì)指數(shù)濾波器的,基于梯度信息和全局區(qū)域信息的邊緣檢測(cè)函數(shù),來(lái)避免陷入局部最優(yōu)和邊界定位不準(zhǔn)的問(wèn)題。利用人工合成的圖像和真實(shí)的道路、湖泊以及艦船的高分辨率SAR遙感圖像進(jìn)行分割實(shí)驗(yàn),對(duì)比已有的基于水平集的SAR遙感圖像分割方法,證明了本文的兩種改進(jìn)水平集方法都能夠在背景雜波下,很好地抑制乘性相干斑噪聲,準(zhǔn)確地定位目標(biāo)物體的邊緣輪廓,提高對(duì)SAR遙感圖像的分割精度。
[Abstract]:Synthetic Aperture Radar (SAR) is a kind of high-resolution microwave remote sensing coherent imaging radar, which plays an important role in military and national economy. One of the basic and key techniques of SAR remote sensing image segmentation is to separate the target region from the background area. However, there are a lot of multiplicative speckle noises in the SAR remote sensing image and the gray distribution of the image region is not uniform. The edge of object in SAR remote sensing image can not be accurately located, and it is difficult to segment SAR image accurately and efficiently. How to quickly and effectively realize the segmentation of SAR remote sensing image is a difficult problem to be solved. With the development of SAR remote sensing image research, the level set model is favored by researchers at home and abroad because of its good adaptability to the curve topology change and no need for noise preprocessing. On the basis of summarizing and analyzing the existing SAR remote sensing image segmentation methods based on level set, this paper aims at the multiplicative speckle noise and uneven gray distribution of SAR remote sensing image. In this paper, two level set models for fusion of regional information and edge gradient information are proposed. The main work of segmentation of SAR remote sensing image is as follows: aiming at the problem of target edge blur and target edge location incorrectly in SAR remote sensing image, A high resolution SAR remote sensing image segmentation method based on improved C-V model is proposed. This method aims at the disadvantage that C-V model can not segment uneven grayscale image, and the model only uses the region information but not the edge gradient information, which results in more false edges of the target object after segmentation. In this paper, based on the statistical characteristics of SAR remote sensing images, a G0 distribution function, which can fit both uniform and non-uniform regions, is proposed to fit the images and to solve the problem of inaccurate segmentation of non-uniform gray-scale images. At the same time, an improved edge indicator function is introduced into the C-V model. The edge indicator function can remove the multiplicative noise in the SAR remote sensing image and locate the boundary of the target. The evolution rate of the control curve and the reinitialization of the level set function are avoided. Aiming at the uneven gray distribution of SAR remote sensing images, a method of SAR remote sensing image segmentation based on improved LIF model is proposed. This method is based on the fact that the LIF model can segment inhomogeneous grayscale images well, and aims at the disadvantages of local image fitting (LIF) model, which is sensitive to noise and easy to fall into local minimum value and inaccurate edge location in the evolution process. The truncated exponential smoothing filter based on linear minimum mean square error is introduced to improve the segmentation accuracy, and the edge detection function based on gradient information and global region information is introduced, which combines fuzzy C-means (FCM) and infinite pair exponential filter. To avoid the problem of local optimum and inaccurate boundary location. Using artificial synthetic image and real road, lake and ship high resolution SAR remote sensing image segmentation experiment, compare the existing SAR remote sensing image segmentation method based on level set. It is proved that the two improved level set methods in this paper can effectively suppress multiplicative speckle noise under background clutter, accurately locate the edge contour of the target object, and improve the segmentation accuracy of SAR remote sensing images.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP751

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 呂紅力;王仁芳;;基于符號(hào)壓力函數(shù)驅(qū)動(dòng)的活動(dòng)輪廓圖像分割[J];系統(tǒng)仿真學(xué)報(bào);2016年01期

2 江曉亮;李柏林;劉甲甲;王強(qiáng);;基于改進(jìn)活動(dòng)輪廓模型的圖像分割[J];計(jì)算機(jī)工程;2015年04期

3 宋發(fā)興;楊獻(xiàn)超;郭健;高留洋;劉東升;;一種對(duì)Gamma分布的SAR圖像相干斑去噪方法[J];計(jì)算技術(shù)與自動(dòng)化;2014年03期

4 王沛;周鑫;彭榮鯤;符鵬;;結(jié)合邊緣和區(qū)域的活動(dòng)輪廓模型SAR圖像目標(biāo)輪廓提取[J];中國(guó)圖象圖形學(xué)報(bào);2014年07期

5 傅興玉;尤紅建;付琨;;基于改進(jìn)Markov隨機(jī)場(chǎng)的高分辨率SAR圖像建筑物分割算法[J];電子學(xué)報(bào);2012年06期

6 王斌;李潔;高新波;;一種基于邊緣與區(qū)域信息的先驗(yàn)水平集圖像分割方法[J];計(jì)算機(jī)學(xué)報(bào);2012年05期

7 盧潔;楊學(xué)志;郎文輝;左美霞;徐勇;;區(qū)域GMM聚類(lèi)的SAR圖像分割[J];中國(guó)圖象圖形學(xué)報(bào);2011年11期

8 倪維平;嚴(yán)衛(wèi)東;邊輝;吳俊政;蘆穎;王培忠;;基于MRF模型和形態(tài)學(xué)運(yùn)算的SAR圖像分割[J];電光與控制;2011年01期

9 馮籍瀾;曹宗杰;皮亦鳴;;一種基于G~0分布的水平集SAR圖像分割方法[J];現(xiàn)代雷達(dá);2010年12期

10 孔丁科;汪國(guó)昭;;基于區(qū)域相似性的活動(dòng)輪廓SAR圖像分割[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2010年09期

相關(guān)博士學(xué)位論文 前1條

1 馮籍瀾;高分辨率SAR圖像分割與分類(lèi)方法研究[D];電子科技大學(xué);2015年

相關(guān)碩士學(xué)位論文 前6條

1 黃倩;基于粒子群優(yōu)化聚類(lèi)的SAR圖像分割方法研究[D];西安電子科技大學(xué);2014年

2 汪柯陸;基于模糊c均值聚類(lèi)的SAR圖像分割算法研究[D];西安電子科技大學(xué);2014年

3 楊琳;基于改進(jìn)活動(dòng)輪廓模型的SAR圖像分割方法研究[D];西安電子科技大學(xué);2013年

4 劉震加;基于全變分和特征向量集成譜聚類(lèi)的SAR圖像分割[D];西安電子科技大學(xué);2013年

5 劉娜娜;基于水平集的SAR圖像分割[D];西安電子科技大學(xué);2012年

6 翟艷霞;基于統(tǒng)計(jì)模型的SAR圖像分割[D];西安電子科技大學(xué);2010年

,

本文編號(hào):2146147

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2146147.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)4411f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com