不確定信息認知對象的仿反饋認知智能機制與計算模型研究
本文選題:認知智能 + 不確定信息 ; 參考:《合肥工業(yè)大學》2017年博士論文
【摘要】:模擬人的意識、思維過程是一門極富挑戰(zhàn)性的科學。本文針對傳統(tǒng)認知系統(tǒng)單向開環(huán)方式與人類認知事物反復推敲比對的信息交互過程存在顯著差異問題,面對認知系統(tǒng)中可識別率與正確率不可在線實時測評的工程難題,探討了不確定信息認知對象建模、廣義認知誤差度量和仿反饋調(diào)節(jié)機制三位一體的仿人認知智能新研究方法。基于粗糙集理論,探索建立不確定信息認知對象的模式化結(jié)構(gòu)模型和運行機制。基于廣義誤差理論與熵理論,探索建立廣義認知誤差的多層次變粒度熵函數(shù)形式測度指標評價體系;诜答伩刂扑枷牒驼J知知識粒度計算工具,探索建立具有仿反饋模式的認知智能運行機制。力圖對一類不確定信息認知對象和不確定認知過程效果與認知結(jié)果的認知智能系統(tǒng)建立仿人反復推敲比對思維信息交互模式的認知智能機制與計算模型,這對于人工智能學科的發(fā)展具有拓展意義。本文取得的主要研究成果如下:(1)不確定信息認知對象仿反饋認知智能系統(tǒng)的結(jié)構(gòu)與運行機制研究。構(gòu)建一種仿人認知事物粗推敲細比對反復交互模式的三層三段互耦合仿反饋認知智能系統(tǒng)的結(jié)構(gòu)模式與運行機制,給出了仿反饋認知智能系統(tǒng)的構(gòu)建目標,規(guī)范了功能要求和運行機制,為建立不確定信息認知對象的仿反饋認知智能系統(tǒng)提供了模式化結(jié)構(gòu)的構(gòu)建方法。(2)不確定信息認知對象的認知智能決策信息系統(tǒng)模型研究。針對目前學術界普遍認為不存在能夠適應于各種數(shù)據(jù)的通用知識獲取方法問題,構(gòu)建了基于粗糙集的不確定信息認知對象的多信息融合有監(jiān)督學習認知智能決策信息系統(tǒng),給出了基于特征簡約的認知知識融合充分性和可分類性熵函數(shù)形式測度指標,在有限論域的不確定信息條件下,為不確定信息認知對象的認知知識優(yōu)化表征提供了普適性的認知智能決策信息系統(tǒng)模型。(3)不確定認知過程效果與認知結(jié)果的廣義認知誤差評價體系研究。針對目前學術界普遍采用后驗評價認知結(jié)果可信度方法不能滿足認知系統(tǒng)中可識別率與正確率的在線實時測評問題,構(gòu)建了不確定信息認知對象和不確定認知過程效果與認知結(jié)果的認知誤差信息系統(tǒng),定義了基于熵函數(shù)形式測度指標的不確定認知過程效果與認知結(jié)果誤差熵、不確定認知過程效果與認知結(jié)果誤差熵序列相似度和認知知識粒度誤差三種廣義認知誤差,建立了不確定認知過程效果與認知結(jié)果可信度在線實時測評體系,為仿反饋認知智能調(diào)節(jié)機制提供了量化標準。(4)不確定信息認知對象的仿反饋認知智能機制研究。針對傳統(tǒng)認知系統(tǒng)單向開環(huán)方式與人類認知事物反復推敲比對的信息交互過程存在顯著差異問題,構(gòu)建了基于廣義認知誤差在線實時度量的仿反饋認知智能調(diào)節(jié)機制,定義了仿反饋認知知識粒度調(diào)節(jié)規(guī)則與計算方法,建立了多層次變知識粒度的層間調(diào)節(jié)與層內(nèi)尋優(yōu)模式,實現(xiàn)對不確定信息認知對象的變知識粒度的仿反饋認知智能調(diào)節(jié)機制,為模仿人類認知事物反復推敲比對的信息交互過程提供了一種智能認知機制。(5)單目標完全狀態(tài)的脫機手寫體漢字圖像的機器認知應用驗證研究。針對手寫體漢字數(shù)量大,字體字型繁多,相似字多,書寫風格各異等識別難題,基于本文提出的仿反饋認知智能方法,研究了具有認知知識粒度智能調(diào)節(jié)機制的脫機手寫體漢字圖像仿反饋認知智能系統(tǒng)。選用SCUT-IRAC HCCLIB手寫體漢字圖像樣本庫的多類漢字樣本圖像作為認知對象,進行了仿真實驗以驗證本方法的可行性與有效性。實驗結(jié)果表明,本文方法較傳統(tǒng)單向開環(huán)方法具有明顯優(yōu)勢,為實現(xiàn)對脫機手寫體漢字圖像的“機器識字”代替“人工識字”探索了一種實踐應用新方法。(6)多目標較完全狀態(tài)的工業(yè)回轉(zhuǎn)窯燒成狀態(tài)的機器認知應用驗證研究。針對工業(yè)環(huán)境復雜所導致采集的樣本數(shù)據(jù)性能較差問題,基于本文提出的仿反饋認知智能方法,研究了基于火焰圖像的工業(yè)回轉(zhuǎn)窯燒成狀態(tài)仿反饋認知智能系統(tǒng)。選用東北大學流程工業(yè)綜合自動化國家重點實驗室提供的某水泥廠2#回轉(zhuǎn)窯燒成帶火焰圖像樣本和測量數(shù)據(jù),采用MATLAB仿真實驗驗證本方法的可行性與有效性。實驗結(jié)果表明,本文方法能夠從宏觀到微觀挖掘火焰圖像特征知識并反復認知決策面附近的樣本,為實現(xiàn)水泥燒結(jié)過程監(jiān)控和基于熟料質(zhì)量閉環(huán)控制的“機器看火”取代“人工看火”探索了一種工程應用新方法。(7)多目標不完全狀態(tài)的人體健康狀態(tài)評測的機器認知應用驗證研究。針對人群樣本非均質(zhì)性、人體特征多樣性和人體特征值隨機性等問題,基于本文提出的仿反饋認知智能方法,研究了基于變認知知識粒度的人體健康狀態(tài)仿反饋認知智能系統(tǒng)。選用中國科學院智能機械研究所提供的隨機人群生物電阻抗信號樣本,采用MATLAB仿真實驗以驗證本方法的可行性與有效性。實驗結(jié)果表明,本文方法能夠在不同認知知識粒度層次中表征健康知識并模糊匹配健康指標,為客觀準確地評測人體健康狀態(tài)的“機器診斷”取代“人工診斷”探索了一種實際應用新方法。(8)單目標不完全狀態(tài)的全天候光伏發(fā)電智能認知跟蹤控制應用驗證研究。針對天氣環(huán)境的非線性、非平穩(wěn)性、大間歇性和隨機性導致的光伏電池跟蹤控制難題,基于本文提出的仿反饋認知智能方法,研究了全天候光伏發(fā)電智能認知跟蹤控制系統(tǒng),并給出了基于全景圖像變粒度仿反饋認知太陽位置的計算方法。采用平板型和聚光型等多種光伏電池組件及其伺服機構(gòu),開展了實驗研究以驗證本文方法的可行性與有效性。實驗結(jié)果表明,本文的三層三段光伏發(fā)電智能認知跟蹤控制系統(tǒng)模型能夠基于風、雪、白天、黑夜、陰/雨和晴/多云等環(huán)境與系統(tǒng)狀態(tài)的認知知識執(zhí)行相應的控制策略并在晴/多云跟蹤控制中基于準確計算太陽方位提高光伏效能,為實現(xiàn)光伏發(fā)電系統(tǒng)的高效、節(jié)能和安全運行探索了一種智能化控制應用新方法。
[Abstract]:To simulate human consciousness, the process of thinking is a very challenging science. In this paper, there is a significant difference in the information interaction between the one-way open loop mode of the traditional cognitive system and the comparison of the human cognitive things, and the difficult problem that the recognition rate and the correct rate can not be measured online in real time in the cognitive system, and the inaccuracy is discussed. Based on rough set theory, a model structure model and operation mechanism for establishing a cognitive object of uncertain information are explored based on rough set theory. Based on the generalized error theory and entropy theory, the multiple cognitive errors are explored. Based on the feedback control idea and the cognitive knowledge granularity computing tool, a cognitive intelligence operation mechanism with mimic feedback mode is established based on the feedback control idea and the cognitive knowledge granularity computing tool. The cognitive intelligence mechanism and the calculation model of the thinking information interaction model are compared. The main achievements of this paper are as follows: (1) research on the structure and operation mechanism of the imitative feedback cognitive intelligence system with uncertain information cognitive objects. The structure mode and operation mechanism of the three layer and three segment mutual coupling feedback cognitive intelligent system with repeated interaction mode are given, and the construction target of the imitation feedback cognitive intelligent system is given, the functional requirements and the operating mechanism are standardized, and the model structure is constructed for the imitation and recognition intelligent system of the uncertain information cognitive object. Method. (2) research on cognitive intelligence decision information system model of uncertain information cognitive object. Aiming at the problem that there is no common knowledge acquisition method that can adapt to all kinds of data in the current academic circle, the multi information fusion of uncertain information cognitive objects based on rough set is constructed and the intelligent decision information of supervised learning cognition is constructed. The system provides an index of cognitive knowledge fusion sufficiency and classification entropy function form based on characteristic simplicity. Under the uncertain information condition of finite domain, it provides a universal cognitive intelligence decision system model for the cognitive knowledge optimization representation of uncertain information cognitive objects. (3) the effect of uncertain cognitive process and Research on the generalized cognitive error evaluation system of cognitive results. In view of the fact that the current academic circles generally adopt the method of cognitive results reliability of posterior evaluation to meet the online real-time evaluation of recognition rate and correct rate in the cognitive system, the cognitive errors of uncertain information cognitive objects and uncertain cognitive process effects and cognitive results are constructed. The information system defines the uncertain cognitive process effect and the cognitive result error entropy based on the entropy function measure index. It does not determine the three generalized cognitive errors of the cognitive process effect and the cognitive result error entropy sequence and the cognitive knowledge granularity error, and establishes the online reality of the uncertainty recognition process effect and the cognitive result reliability. The time evaluation system provides a quantitative standard for the feedback cognitive intelligent adjustment mechanism. (4) the study of the imitating feedback cognitive intelligence mechanism of the uncertain information cognitive objects. The mimic feedback cognitive intelligence regulation mechanism which is poor online real-time measurement, defines the rules and calculation methods of the imitation feedback cognitive knowledge granularity, and establishes a multi-level variable knowledge granularity interlayer adjustment and the layer optimization model, and realizes the imitation feedback cognitive intelligent adjustment mechanism for the variable knowledge granularity of the uncertain information cognitive objects. Cognitive things provide an intelligent cognitive mechanism for the interactive process of information interaction. (5) the research and verification of the machine cognitive application of the off-line handwritten Chinese character image with a single goal and complete state. The recognition problem of the handwritten Chinese characters is large, the font font is numerous, the similar characters are many, and the writing style is different. The simulation feedback cognitive intelligence system of off-line handwritten Chinese character image with cognitive knowledge granularity intelligent adjustment mechanism is studied. The simulation experiment is carried out to verify the feasibility and effectiveness of this method by using the multi class Chinese character sample images of the SCUT-IRAC HCCLIB handwritten Chinese character image sample library as the cognitive object. The results show that this method has obvious advantages over the traditional one-way open loop method. A new practical application method is explored for the realization of "machine literacy" instead of "artificial literacy" for the off-line handwritten Chinese character image. (6) the machine cognitive application verification research on the burning state of industrial rotary kiln with multiple targets and complete state. Based on the imitation feedback cognitive intelligence method proposed in this paper, the imitation feedback cognitive intelligence system of the firing state of industrial rotary kiln based on flame image is studied based on the proposed simulation feedback cognitive intelligence method. The 2# rotary kiln firing zone of a cement plant is selected from the State Key Laboratory of the integrated automation of the process industry of Northeastern University. The flame image sample and the measured data are verified by MATLAB simulation experiment. The experimental results show that the method can excavate the characteristics of flame image from macro to micro and recognize the samples near the decision surface repeatedly, so as to realize the monitoring of the cement sintering process and the closed loop control of the clinker quality. A new method of engineering application is explored in place of "fire" instead of "fire". (7) a machine cognitive application verification study of human health status assessment of multi objective incomplete state. The imitation feedback cognitive intelligence system of human health state based on variable cognitive knowledge is studied. The feasibility and effectiveness of this method are verified by using MATLAB simulation experiments to verify the feasibility and effectiveness of this method. The results show that this method can be in different cognitive knowledge. To characterize health knowledge and fuzzy matching health indicators in the hierarchy of granularity, a new method is explored for the objective and accurate evaluation of human health status by "machine diagnosis" instead of "artificial diagnosis". (8) application verification research on intelligent recognition and tracking control of all weather photovoltaic power generation in single target incomplete state. The problem of photovoltaic cell tracking control is caused by nonlinear, non stationary, large intermittency and randomness. Based on the simulated feedback cognitive intelligence method proposed in this paper, the intelligent cognitive tracking control system for all weather photovoltaic power generation is studied, and a calculation method based on panoramic image variable granularity feedback is given. The experimental research is carried out to verify the feasibility and effectiveness of this method. The experimental results show that the model of the intelligent cognitive tracking control system of three layers and three segments of photovoltaic power generation can be based on the environment and system state of wind, snow, day, night, cloudy / rain and cloudy / cloudy. The cognitive knowledge carries out the corresponding control strategy and improves the photovoltaic efficiency based on the accurate calculation of the sun azimuth in the clear / multi cloud tracking control. A new intelligent control application method is explored to realize the high efficiency, energy saving and safe operation of the photovoltaic power generation system.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TP18
【相似文獻】
相關期刊論文 前8條
1 呂鋒,趙愚;BCW與認知對象的關聯(lián)特性研究[J];武漢工業(yè)大學學報;1992年03期
2 劉 潔,陳小平,蔡慶生,范焱;不確定信息的認知結(jié)構(gòu)表示、推理和學習[J];軟件學報;2002年04期
3 李輝;嚴雋薇;劉敏;;本體不確定信息的推理機制及其實現(xiàn)[J];制造業(yè)自動化;2009年01期
4 陳亮;陳麗芳;馬英;;基于不確定信息系統(tǒng)的動態(tài)屬性約簡算法[J];信息技術與信息化;2012年05期
5 陳俠;李林;;不確定信息環(huán)境下目標毀傷效果評估[J];系統(tǒng)工程與電子技術;2013年04期
6 何兵,郝愛民,趙沁平;一種基于不確定信息的決策方法[J];計算機學報;2004年02期
7 王萬軍;阮文惠;胡建軍;邢玉娟;李恒杰;;Vague集不確定信息處理SPA方法研究進展[J];山西師范大學學報(自然科學版);2014年02期
8 趙肖冰;鄂旭;李克;李艷紅;王全鐵;;不確定信息系統(tǒng)中基于粒細度的屬性約簡[J];計算機工程;2011年07期
相關會議論文 前2條
1 李輝;嚴雋薇;劉敏;;本體不確定信息的推理機制及其實現(xiàn)[A];全國先進制造技術高層論壇暨第七屆制造業(yè)自動化與信息化技術研討會論文集[C];2008年
2 朱傳軍;常治斌;;制造車間不確定信息研究現(xiàn)狀與趨勢[A];2006年湖北省博士論壇——先進制造技術與制造裝備論文集[C];2006年
相關博士學位論文 前2條
1 陳克瓊;不確定信息認知對象的仿反饋認知智能機制與計算模型研究[D];合肥工業(yè)大學;2017年
2 朱培逸;不確定信息的融合方法及其應用研究[D];江南大學;2013年
相關碩士學位論文 前2條
1 李明;一類不確定信息量化的凸優(yōu)化方法及在壓縮感知中的應用[D];杭州電子科技大學;2016年
2 陳站成;漢語否定與不確定信息識別研究[D];蘇州大學;2014年
,本文編號:2099798
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2099798.html