天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

寒地大豆病蟲害診斷方法研究

發(fā)布時間:2018-06-25 14:05

  本文選題:大豆病蟲害診斷 + 層次分析法。 參考:《東北農(nóng)業(yè)大學》2017年碩士論文


【摘要】:在我國專業(yè)農(nóng)業(yè)診斷知識的匱乏和專業(yè)農(nóng)業(yè)專家的稀缺之間的矛盾已經(jīng)日益嚴重,也嚴重阻礙了我國農(nóng)業(yè)精準化、現(xiàn)代化的發(fā)展,而解決這一矛盾的重要渠道,就是實現(xiàn)農(nóng)業(yè)的智能化。在我國眾多大豆種植區(qū)域中病蟲害的存在往往會造成10%以上的直接經(jīng)濟損失,個別地區(qū)會達到30%以上,多種形式的病蟲害已經(jīng)極大的制約我國出產(chǎn)的大豆的產(chǎn)量及品質(zhì)。目前人工智能技術已廣泛應用于疾病診斷領域,人工神經(jīng)網(wǎng)絡在作物病蟲害診斷中的應用已成為一種流行趨勢。因此本文擬針對大豆病蟲害進行精準判定,選取模糊神經(jīng)網(wǎng)絡進行模型建立,并引入AHP層次分析法自動生成和調(diào)整隸屬度函數(shù),探討結合模糊神經(jīng)網(wǎng)絡與AHP層次分析法進行病蟲害診斷的可行途徑。通過仿真實驗顯示,利用模糊神經(jīng)網(wǎng)絡與層次分析法相結合的模型用于大豆病蟲害診斷具有泛化能力強、診斷速度快、正確率高等優(yōu)點,不失為一個好的選擇。具體內(nèi)容如下:首先,輸出采用7種我國具有代表性的食心蟲等蟲害。對182個大豆蟲害樣品,依據(jù)危害方式、危害癥狀等8種性狀進行診斷,選擇136個大豆蟲害樣本作為訓練集,并用46個樣本作為測試集。通過對大豆病蟲害癥狀的收集整理和分析,分別使用對輸入/輸出向量進行數(shù)字化編碼和對輸入使用AHP層次分析法,將用兩種方法處理后的數(shù)據(jù)用作神經(jīng)網(wǎng)絡的輸入向量。其次,分別建立3種用于訓練和仿真的神經(jīng)網(wǎng)絡模型。分析BP神經(jīng)網(wǎng)絡中的最佳隱含層節(jié)點數(shù)、訓練目標、學習速率和訓練次數(shù)等參數(shù)對網(wǎng)絡性能的影響;論證RBF徑向基神經(jīng)網(wǎng)絡中徑向基密度參數(shù)對訓練結果的影響;同時論證模糊神經(jīng)網(wǎng)絡中隱層節(jié)點數(shù)和訓練次數(shù)等參數(shù)對模型的響應結果。最后,對比三種類型神經(jīng)網(wǎng)絡對不同大豆病蟲害進行診斷后的準確率,從實驗結果論證了模糊神經(jīng)網(wǎng)絡應用于大豆病蟲害具有最佳診斷效果。實驗結果表明,選擇層次分析法對輸入進行處理以及模糊神經(jīng)網(wǎng)絡進行建模,在46個測試樣本中,共有44個樣本進行了預測,識別率高達95%,證明了該方法對大豆害蟲的判別是可行的。
[Abstract]:The contradiction between the lack of specialized agricultural diagnostic knowledge and the scarcity of specialized agricultural experts in China has become increasingly serious, which has also seriously hindered the development of agricultural precision and modernization in our country. It is to realize the intelligence of agriculture. In many soybean planting areas in China, the existence of pests and diseases will often cause more than 10% of direct economic losses, and a few areas will reach more than 30%. Many forms of diseases and pests have greatly restricted the yield and quality of soybean produced in China. At present, artificial intelligence technology has been widely used in the field of disease diagnosis, and the application of artificial neural network in the diagnosis of crop diseases and insect pests has become a popular trend. Therefore, this paper intends to accurately judge soybean pests and diseases, select fuzzy neural network to establish the model, and introduce AHP to automatically generate and adjust membership function. This paper discusses the feasible ways to diagnose diseases and insect pests by combining fuzzy neural network with AHP. The simulation results show that the model combined with fuzzy neural network and analytic hierarchy process has the advantages of strong generalization ability, fast diagnosis speed and high accuracy, and it is a good choice. The specific contents are as follows: first, the output uses 7 representative insect pests and other pests in China. Based on the diagnosis of 182 soybean pest samples, 136 soybean pest samples were selected as training set and 46 samples were used as test sets. By collecting and analyzing the symptoms of soybean diseases and insect pests, the input / output vector was digitalized and the input was analyzed by AHP. The data processed by two methods was used as the input vector of neural network. Secondly, three neural network models are established for training and simulation. The effects of the optimal number of hidden layer nodes, training target, learning rate and training times on the performance of the neural network are analyzed, and the effects of radial basis function density parameters on the training results in RBF radial basis function neural network are demonstrated. At the same time, the response results of the parameters such as the number of hidden layer nodes and the number of training times to the model in the fuzzy neural network are discussed. Finally, the accuracy of three types of neural networks for the diagnosis of different soybean pests and diseases was compared, and the best diagnostic effect of the fuzzy neural network applied to soybean diseases and insect pests was demonstrated from the experimental results. The experimental results show that the analytic hierarchy process (AHP) is selected to deal with the input and the fuzzy neural network is used to model the model. Out of 46 test samples, 44 samples are predicted. The recognition rate is as high as 95%, which proves that this method is feasible for the identification of soybean pests.
【學位授予單位】:東北農(nóng)業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S435.651;TP183

【參考文獻】

相關期刊論文 前10條

1 馬曉丹;關海鷗;祁廣云;劉剛;譚峰;;基于改進級聯(lián)神經(jīng)網(wǎng)絡的大豆葉部病害診斷模型[J];農(nóng)業(yè)機械學報;2017年01期

2 胡慧明;錢海忠;何海威;王驍;陳競男;;采用層次分析法的面狀居民地自動選取[J];測繪學報;2016年06期

3 邱志成;許燕飛;;基于自適應RBF模糊神經(jīng)網(wǎng)絡的旋轉柔性鉸接梁的振動控制[J];振動與沖擊;2016年07期

4 李建軍;許燕;張冠;魏正英;張育斌;;基于BP神經(jīng)網(wǎng)絡預測和模糊控制的灌溉控制器設計[J];機械設計與研究;2015年05期

5 靳然;李生才;;農(nóng)作物害蟲預測預報方法及應用[J];山西農(nóng)業(yè)科學;2015年01期

6 石東源;熊國江;陳金富;李銀紅;;基于徑向基函數(shù)神經(jīng)網(wǎng)絡和模糊積分融合的電網(wǎng)分區(qū)故障診斷[J];中國電機工程學報;2014年04期

7 單文桃;陳小安;合燁;周明紅;劉俊峰;;基于免疫遺傳算法的模糊徑向基函數(shù)神經(jīng)網(wǎng)絡在高速電主軸中的應用[J];機械工程學報;2013年23期

8 魏清鳳;羅長壽;曹承忠;郭強;;基于模糊神經(jīng)網(wǎng)絡的蔬菜病害診斷模型研究[J];湖北農(nóng)業(yè)科學;2013年17期

9 賈花萍;;農(nóng)作物蟲情的模糊神經(jīng)網(wǎng)絡預測模型[J];浙江農(nóng)業(yè)學報;2013年04期

10 李正明;張紀華;陳敏潔;;基于層次分析法的企業(yè)有序用電模糊綜合評估[J];電力系統(tǒng)保護與控制;2013年07期

相關碩士學位論文 前1條

1 鞠初旭;模糊神經(jīng)網(wǎng)絡的研究及應用[D];電子科技大學;2012年

,

本文編號:2066252

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2066252.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶5e61c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com