面向雙臂協(xié)同的阻抗控制方法研究
本文選題:雙臂協(xié)同 + 運(yùn)動(dòng)學(xué)約束; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:現(xiàn)代生產(chǎn)對智能化、協(xié)同性及功能性的要求不斷提高,傳統(tǒng)的單個(gè)機(jī)器人在固定工位的程序化操作已經(jīng)很難滿足當(dāng)前工廠智能化的要求,而雙臂機(jī)器人由于其功能性強(qiáng)、靈活性高、負(fù)載能力強(qiáng)等特點(diǎn)得到了廣泛的關(guān)注。但是,雙臂機(jī)器人在協(xié)同操作時(shí)存在較強(qiáng)的運(yùn)動(dòng)學(xué)約束及復(fù)雜的動(dòng)力學(xué)耦合問題,因此雙臂機(jī)器人之間的協(xié)調(diào)運(yùn)動(dòng)及力控制成為其在工業(yè)環(huán)境下進(jìn)行推廣和使用需要解決的關(guān)鍵問題。針對于傳統(tǒng)的雙臂協(xié)同運(yùn)動(dòng)過程中約束較多、易碰撞,及力控制過程對精確動(dòng)力學(xué)模型的要求較高、力追蹤誤差較大等問題,本文重點(diǎn)開展了對雙臂協(xié)同作業(yè)的運(yùn)動(dòng)協(xié)調(diào)及力控制問題的研究,建立了雙臂運(yùn)動(dòng)學(xué)約束方程,進(jìn)行了雙臂避碰規(guī)劃,利用間接自適應(yīng)阻抗控制方法實(shí)現(xiàn)了雙臂解耦的操作力控制,并通過仿真及實(shí)驗(yàn)驗(yàn)證了所提方法的有效性,具體的研究內(nèi)容如下:針對于雙臂機(jī)器人的協(xié)同運(yùn)動(dòng)問題,通過運(yùn)動(dòng)學(xué)約束方程及避碰方法實(shí)現(xiàn)了對雙臂的運(yùn)動(dòng)規(guī)劃。本文首先建立了機(jī)器人的D-H坐標(biāo)系,進(jìn)行了正、逆解的求解,然后分析了雙臂及被操作物體形成的封閉鏈,確定了雙臂末端的位置及速度約束關(guān)系;對于雙臂可能發(fā)生的碰撞,利用圓柱加半球的碰撞模型簡化方法對雙臂進(jìn)行簡化建模,在簡化模型間最短距離計(jì)算的基礎(chǔ)上,結(jié)合速度排斥場方法進(jìn)行避碰規(guī)劃,并通過仿真驗(yàn)證了約束方程及避碰方法的正確性。針對雙臂力控制問題,本文利用間接自適應(yīng)阻抗控制方法實(shí)現(xiàn)了對物體的緊協(xié)調(diào)操作。首先根據(jù)阻抗控制參數(shù)分析結(jié)果,結(jié)合基于遺傳算法的尋優(yōu)方法,獲得了阻抗控制系統(tǒng)最優(yōu)參數(shù);利用被操作物體的動(dòng)力學(xué)方程與運(yùn)動(dòng)狀態(tài)信息,實(shí)現(xiàn)了雙臂期望操作力的分配;基于雙臂機(jī)器人末端力、位移信息,結(jié)合非線性最小二乘法擬合方法與碰撞函數(shù),獲得了未知環(huán)境參數(shù)以及雙臂末端位移補(bǔ)償量。在上述基礎(chǔ)上,結(jié)合間接自適應(yīng)阻抗控制方法,建立了有、無外界干擾的雙臂協(xié)同控制策略。最后,本文搭建了雙臂仿真及實(shí)驗(yàn)平臺,在仿真上驗(yàn)證了雙臂協(xié)調(diào)控制策略的有效性,并進(jìn)行了雙臂避碰及協(xié)同操作的實(shí)物實(shí)驗(yàn),實(shí)現(xiàn)了雙臂的無碰撞運(yùn)動(dòng)以及雙臂對物體的夾持操作。此外,本文根據(jù)期望力的不同做了多組對比實(shí)驗(yàn),得到了本文方法及傳統(tǒng)方法在不同期望力下對目標(biāo)力的追蹤結(jié)果,驗(yàn)證了本文提出方法的正確性。
[Abstract]:The requirements of modern production for intelligence, cooperation and functionality are constantly improved. The programmed operation of traditional single robot in fixed position has been difficult to meet the requirements of intelligent factory, but the dual-arm robot has strong functionality. High flexibility, strong load capacity and other characteristics have been widely concerned. However, there are strong kinematics constraints and complex dynamic coupling problems in the cooperative operation of the dual-arm robot. Therefore, the coordination of motion and force control between dual-arm robots has become a key problem to be solved in the industrial environment. In the traditional two-arm cooperative motion process, the constraints are more, the collision is easy, and the force control process requires higher precise dynamic model, and the force tracking error is large, and so on. This paper focuses on the study of motion coordination and force control of dual-arm cooperative operation, establishes the two-arm kinematics constraint equation, and carries out the dual-arm collision avoidance planning. The indirect adaptive impedance control method is used to realize the two-arm decoupling force control, and the effectiveness of the proposed method is verified by simulation and experiments. The specific research contents are as follows: aiming at the cooperative motion of the dual-arm robot, The kinematics constraint equation and collision avoidance method are used to realize the motion planning of both arms. In this paper, the D-H coordinate system of the robot is established, and the forward and inverse solutions are solved. Then, the closed chain between the two arms and the operated object is analyzed, and the position and velocity constraints at the end of the two arms are determined. The simplified method of collision model with cylinder and hemispheres is used to simplify the two-arm model. On the basis of simplifying the calculation of the shortest distance between the models, the collision avoidance planning is carried out by combining the velocity exclusion field method. The correctness of constraint equation and collision avoidance method is verified by simulation. In order to solve the problem of double arm force control, the indirect adaptive impedance control method is used to realize the compact and coordinated operation of the object. According to the results of impedance control parameter analysis and the optimization method based on genetic algorithm, the optimal parameters of impedance control system are obtained. Based on the end force and displacement information of the two-arm robot and the nonlinear least square fitting method and the collision function, the unknown environment parameters and the displacement compensation at the end of the two arms are obtained. On the basis of the above, combined with the indirect adaptive impedance control method, a two-arm cooperative control strategy with and without external interference is established. Finally, the simulation and experiment platform of double arms is built, and the effectiveness of the coordinated control strategy of both arms is verified by simulation, and the physical experiments of double arms collision avoidance and cooperative operation are carried out. The collision-free motion of the two arms and the clamping operation of the two arms to the object are realized. In addition, according to the different expected forces, this paper makes a number of comparative experiments, and obtains the tracking results of the target forces under different expected forces by the method and the traditional method, which verifies the correctness of the proposed method.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 郭小寶;羅振軍;趙振;;UR機(jī)器人的運(yùn)動(dòng)學(xué)和奇異性分析[J];裝備機(jī)械;2017年01期
2 艷濤;;匯童機(jī)器人第4、5代集體亮相[J];機(jī)器人技術(shù)與應(yīng)用;2012年04期
3 周軍;丁希侖;;基于遺傳算法的雙臂機(jī)器人模糊力/位混合控制[J];機(jī)器人;2008年04期
4 李瑞峰,陳輝;七自由度雙作業(yè)臂無碰軌跡規(guī)劃[J];制造業(yè)自動(dòng)化;2005年10期
5 趙曉軍,黃強(qiáng),彭朝琴,張利格,李科杰;基于人體運(yùn)動(dòng)的仿人型機(jī)器人動(dòng)作的運(yùn)動(dòng)學(xué)匹配[J];機(jī)器人;2005年04期
6 陳峰,丁富強(qiáng),趙錫芳;雙臂機(jī)器人無碰撞運(yùn)動(dòng)規(guī)劃[J];機(jī)器人;2002年02期
相關(guān)博士學(xué)位論文 前5條
1 賀軍;變負(fù)載雙臂機(jī)器人阻抗自適應(yīng)控制系統(tǒng)研究[D];中國科學(xué)技術(shù)大學(xué);2016年
2 王美玲;面向救援任務(wù)的雙臂機(jī)器人協(xié)作運(yùn)動(dòng)規(guī)劃與控制方法研究[D];中國科學(xué)技術(shù)大學(xué);2015年
3 楊揚(yáng);基于機(jī)器視覺的服務(wù)機(jī)器人智能抓取研究[D];上海交通大學(xué);2014年
4 歐陽帆;雙機(jī)器人協(xié)調(diào)運(yùn)動(dòng)方法的研究[D];華南理工大學(xué);2013年
5 李憲華;服務(wù)機(jī)器人雙臂協(xié)作技術(shù)研究及實(shí)現(xiàn)[D];上海大學(xué);2011年
相關(guān)碩士學(xué)位論文 前4條
1 鄭彥寧;機(jī)器人宇航員全身協(xié)調(diào)運(yùn)動(dòng)規(guī)劃及雙臂柔順控制研究[D];哈爾濱工業(yè)大學(xué);2015年
2 房立龍;仿人雙臂協(xié)作機(jī)器人設(shè)計(jì)研究[D];中國科學(xué)技術(shù)大學(xué);2015年
3 華磊;冗余雙臂機(jī)器人協(xié)調(diào)操作方法研究[D];哈爾濱工業(yè)大學(xué);2013年
4 胡雨濱;移動(dòng)機(jī)器人雙六自由度機(jī)械臂運(yùn)動(dòng)規(guī)劃[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號:2059271
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2059271.html