天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于鳥類群體響應的萬有引力搜索算法及其在數(shù)據(jù)聚類中的應用

發(fā)布時間:2018-06-16 02:50

  本文選題:萬有引力搜索算法 + 啟發(fā)式搜索算法。 參考:《山西科技》2016年06期


【摘要】:萬有引力搜索算法是一個基于重力和質量動力學規(guī)律的隨機搜索算法,廣泛用于解決優(yōu)化問題。為了增強原算法的性能,提出基于鳥類群體響應的萬有引力搜索算法。該算法引入一個新的多樣性勘探機制以增強它的多樣性勘探能力,該機制通過3個主要步驟實現(xiàn):初始化、最近鄰域個體識別以及方向的改變。借助群體響應機制,提出的算法可以探索范圍更廣的搜索空間,并因此避免陷入局部次優(yōu)解決方案。采用基準優(yōu)化函數(shù)驗證算法,并且應用該算法進行數(shù)據(jù)聚類。結果表明,提出的算法提高了原始GSA的多樣性勘探性能,在優(yōu)化函數(shù)實驗和數(shù)據(jù)聚類中得到了更好的結果。
[Abstract]:The universal gravity search algorithm is a random search algorithm based on the law of gravity and mass dynamics, which is widely used to solve optimization problems. In order to improve the performance of the original algorithm, a universal gravity search algorithm based on bird population response was proposed. The algorithm introduces a new diversity exploration mechanism to enhance its diversity exploration ability. The mechanism is implemented through three main steps: initialization, recent neighborhood identification and direction change. With the help of group response mechanism, the proposed algorithm can explore a wider range of search space and thus avoid falling into local sub-optimal solution. The benchmark optimization function is used to verify the algorithm, and the algorithm is applied to data clustering. The results show that the proposed algorithm can improve the diversity exploration performance of the original GSA and obtain better results in optimization function experiments and data clustering.
【作者單位】: 國網(wǎng)遼寧省電力有限公司信息通信分公司;太原理工大學新型傳感器與智能控制教育部山西省重點實驗室;
【基金】:國家自然科學青年基金(51405327) 山西省自然科學基金(2014011021-1,2014021024-1)
【分類號】:TP18

【相似文獻】

相關期刊論文 前10條

1 白天;冀進朝;何加亮;周春光;;混合屬性數(shù)據(jù)聚類的新方法[J];吉林大學學報(工學版);2013年01期

2 鄒麗珊,鄭金華;數(shù)據(jù)聚類的共同進化方法[J];計算機工程與應用;2004年18期

3 廖志芳;李鵬;劉克準;樊曉平;瞿志華;;數(shù)據(jù)聚類分析新方法研究[J];計算機工程與應用;2009年10期

4 羅可;洪亮亮;童小嬌;;一種有效的分類型數(shù)據(jù)聚類方法[J];控制與決策;2011年10期

5 趙立江;黃永青;;混合屬性數(shù)據(jù)聚類初始點選擇的改進[J];廣西師范大學學報(自然科學版);2007年04期

6 季瑞瑞;劉丁;;支持向量數(shù)據(jù)描述的基因表達數(shù)據(jù)聚類方法[J];智能系統(tǒng)學報;2009年06期

7 田冬陽;;基于M~3-DGMF的專利數(shù)據(jù)聚類方法研究[J];計算機應用與軟件;2013年03期

8 王雙成;俞時權;程新章;;基于依賴結構和Gibbs Sampling的離散數(shù)據(jù)聚類[J];計算機工程;2006年09期

9 常茜茜;張月琴;;一種基于劃分的混合數(shù)據(jù)聚類算法[J];計算機應用與軟件;2014年06期

10 趙宇;李兵;李秀;劉文煌;任守榘;;混合屬性數(shù)據(jù)聚類融合算法[J];清華大學學報(自然科學版);2006年10期

相關碩士學位論文 前2條

1 李靜芬;流數(shù)據(jù)聚類算法的研究與改進[D];河北工業(yè)大學;2014年

2 熊剛;面向無線傳感器網(wǎng)絡的流數(shù)據(jù)聚類算法研究[D];浙江工業(yè)大學;2011年

,

本文編號:2024906

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2024906.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶d04c1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com