面向知識自動化的磨礦系統(tǒng)操作員腦認知特征與控制效果的相關分析
發(fā)布時間:2018-06-12 14:40
本文選題:知識自動化 + 操作控制水平。 參考:《自動化學報》2017年11期
【摘要】:面向知識型工作自動化,研究了流程工業(yè)生產(chǎn)過程中操作人員的腦認知特征與操作控制水平之間的關鍵,建立了一種基于操作員腦網(wǎng)絡特征的操作熟練程度隱性知識的顯性化模型.采用關注信號瞬時相位、基于希爾伯特變換的相位鎖方法,構建了腦功能網(wǎng)絡(Functional brain network,FBN).基于磨礦系統(tǒng)操作員腦功能網(wǎng)絡的圖論參數(shù)與社區(qū)連接強度,建立了特征空間,采用支持向量機與神經(jīng)網(wǎng)絡進行特征分類.結果表明,在高頻區(qū),熟練操作員(熟手)的腦功能網(wǎng)絡連接強度明顯高于不熟練操作員(生手):在低頻部分則生手的腦功能網(wǎng)絡連接強度略高,其特征分類準確率為87.24%.磨礦系統(tǒng)操作過程中形成的溢流粒度(Grinding particle size,GPS)曲線可以初略地反映操作人員的熟練程度,本文在深入分析了其溢流粒度曲線與操作員腦網(wǎng)絡特征的基礎上,發(fā)現(xiàn)相對于溢流粒度曲線操作員的腦網(wǎng)絡特征可以更全面地描述操作控制水平(特別在操作開始時間段),采用腦網(wǎng)絡特征識別操作控制水平在時間上超前于溢流粒度曲線識別方法.本研究對于將知識工作者的認知特征引入到流程工業(yè)控制中,具有一定的借鑒意義.
[Abstract]:In this paper, the key factors between the cognitive characteristics of the operator and the level of operation control are studied in the process of process industry production, which is oriented to the knowledge type work automation. A dominant model of tacit knowledge of operational proficiency based on operator brain network features is established. Based on the phase locking method of Hilbert transform, the functional brain network is constructed by using the instantaneous phase of the concerned signal. Based on the graph theory parameters of the brain functional network of grinding system operator and the intensity of community connection, the feature space is established and the feature classification is carried out by using support vector machine and neural network. The results showed that in the high frequency region, the brain functional network connection intensity of the skilled operators (proficient hands) was significantly higher than that of the unskilled operators (unskilled operators: in the low frequency part, the brain functional network connection intensity was slightly higher, and the accuracy of the characteristic classification was 87.24%). The overflow granularity curve formed during the operation of the grinding system can reflect the proficiency of the operator at first. Based on the in-depth analysis of the overflow granularity curve and the characteristics of the operator's brain network, the overflow granularity curve and the characteristics of the operator's brain network are analyzed in this paper. It is found that the brain network features can describe the operation control level more comprehensively than the overflow granularity curve operator (especially at the beginning of the operation, the brain network feature is used to identify the operation control level ahead of the overflow level in time. Granularity curve recognition method. This study can be used as a reference for knowledge workers to introduce their cognitive characteristics into process industry control.
【作者單位】: 東北大學機械工程與自動化學院;東北大學流程工業(yè)綜合自動化國家重點實驗室;曼徹斯特大學自動化中心;
【基金】:國家自然科學基金(51505069,61621004) 遼寧省高等學校創(chuàng)新團隊項目(LT2014006) 流程工業(yè)綜合自動化國家重點實驗室開放基金(PAL-N201304)資助~~
【分類號】:TP18
【相似文獻】
相關期刊論文 前6條
1 戴琨;向波;;球磨機閉路磨礦回路的智能多變量控制[J];礦山機械;2011年10期
2 張麗;自動化控制系統(tǒng)在礦山碎礦磨礦中的應用[J];黃金;2004年11期
3 程恒;;模糊PID控制技術在磨礦系統(tǒng)中的應用[J];礦山機械;2010年03期
4 張永璽;魏鏡_";蔡曉明;王庭有;;DMC-PID控制在分級磨礦系統(tǒng)中的應用[J];礦冶;2010年04期
5 謝松云;程西娜;丁艷;;Proximal SVM在腦功能分類中的應用研究[J];計算機工程與應用;2009年11期
6 王德燕;黃宋魏;童雄;;磨礦組態(tài)軟件的設計與實現(xiàn)[J];制造業(yè)自動化;2012年19期
相關碩士學位論文 前2條
1 張江;球磨機磨礦控制系統(tǒng)的研究與設計[D];昆明理工大學;2016年
2 許廣游;磨礦控制系統(tǒng)的研究與設計[D];大連理工大學;2016年
,本文編號:2010021
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2010021.html
最近更新
教材專著