永磁電機無傳感器控制系統(tǒng)低速動態(tài)性能提升策略
本文選題:永磁同步電機 + 無位置傳感器控制 ; 參考:《哈爾濱工業(yè)大學》2017年碩士論文
【摘要】:永磁同步電機具有結(jié)構(gòu)堅固、高動態(tài)性能、高轉(zhuǎn)矩慣量比、高轉(zhuǎn)矩電流比及控制靈活等優(yōu)點,廣泛應用于工業(yè)驅(qū)動領(lǐng)域。而位置傳感器直接導致成本提高、系統(tǒng)可靠性下降,因而無傳感器控制領(lǐng)域近年來發(fā)展為研究熱點。但該運行模式有動態(tài)性能降低的弊端,限制了永磁同步電機在高性能需求的領(lǐng)域的應用。低速及零速域無傳感器控制通常采用高頻注入法,其使用的數(shù)字濾波器不可避免的降低了控制系統(tǒng)帶寬。與此同時,不精確的觀測反饋量、觀測器參數(shù)和動態(tài)品質(zhì)差的控制器均會降低系統(tǒng)剛度。因此,本文對基于高頻注入的內(nèi)置式永磁同步電機無傳感器控制系統(tǒng)帶寬及剛度提升問題進行研究。在建立永磁同步電機數(shù)學模型的基礎(chǔ)上,分析無傳感器控制系統(tǒng)非理想因素對電流環(huán)和速度環(huán)帶寬的影響。針對在參數(shù)失配情況下,分析位置觀測器對控制系統(tǒng)穩(wěn)定性的影響。論證了去除信號處理過程中使用的數(shù)字濾波器以及速度反饋低通濾波器可以提高系統(tǒng)帶寬。為了去除數(shù)字濾波器以提高控制系統(tǒng)帶寬,對基于模型預測的高頻方波注入無傳感器控制策略進行研究。由注入高頻電壓與電流時序關(guān)系,簡化信號分離和轉(zhuǎn)子位置誤差提取控制算法,從而去除數(shù)字濾波器。應用所提出的改進的轉(zhuǎn)子位置觀測器,得到轉(zhuǎn)矩脈動更小的觀測轉(zhuǎn)速,去除速度反饋數(shù)字濾波器。采用基于模型預測法的轉(zhuǎn)速預測方案,得到超前于觀測轉(zhuǎn)速的預測轉(zhuǎn)速,將其作為速度反饋提升系統(tǒng)動態(tài)性能。為了提高控制系統(tǒng)剛度,研究永磁同步電機無傳感器自抗擾控制策略。分析系統(tǒng)參數(shù)及觀測器帶寬對剛度的影響,結(jié)合系統(tǒng)速度環(huán)自抗擾控制器狀態(tài)方程數(shù)學模型,采用擴張狀態(tài)觀測器觀測并補償擾動,非線性誤差反饋控制器快速平穩(wěn)的控制誤差反饋,提高了系統(tǒng)魯棒性。在系統(tǒng)不失穩(wěn)的條件下,分析擴張狀態(tài)觀測器及非線性誤差反饋控制器,并給出其參數(shù)設計方法。最后,在理論分析及仿真的基礎(chǔ)上,利用IPMSM對拖加載平臺,對所研究的基于模型預測的無位置傳感器自抗擾控制系統(tǒng)的動態(tài)性能進行實驗驗證。加減速實驗驗證控制策略使系統(tǒng)具有良好的運行特性,電流環(huán)及速度環(huán)帶寬測試驗證了該策略提高帶寬的有效性,有無自抗擾控制器的剛度實驗表明自抗擾策略提高了剛度,所研究的控制策略提升了系統(tǒng)動態(tài)性能。
[Abstract]:Permanent magnet synchronous motor (PMSM) is widely used in industrial drive field because of its rugged structure, high dynamic performance, high torque to inertia ratio, high torque to current ratio and flexible control. The position sensor directly increases the cost and reduces the reliability of the system, so the field of sensorless control has become a research hotspot in recent years. However, this operation mode has the disadvantage of low dynamic performance, which limits the application of PMSM in the field of high performance requirement. In low speed and zero speed domain sensorless control usually adopts high frequency injection method. The digital filter used in the control system inevitably reduces the bandwidth of the control system. At the same time, the system stiffness can be reduced by imprecise observation feedback, observer parameters and controller with poor dynamic quality. Therefore, the bandwidth and stiffness of the sensorless control system of the built-in permanent magnet synchronous motor (PMSM) based on high frequency injection are studied in this paper. Based on the mathematical model of permanent magnet synchronous motor (PMSM), the influence of non-ideal factors of sensorless control system on the bandwidth of current loop and speed loop is analyzed. The effect of the position observer on the stability of the control system is analyzed in the case of parameter mismatch. It is proved that the digital filter and the velocity feedback low pass filter can improve the system bandwidth. In order to remove the digital filter to improve the bandwidth of the control system, the high frequency square wave injection sensorless control strategy based on model prediction was studied. The digital filter is removed by simplifying the signal separation and rotor position error extraction control algorithm based on the timing relationship between high frequency voltage and current. An improved rotor position observer is proposed to obtain a smaller torque ripple and remove the speed feedback digital filter. Based on the model prediction method, the predicted rotational speed which is ahead of the observed speed is obtained, which is used as speed feedback to improve the dynamic performance of the system. In order to improve the stiffness of the control system, the sensorless active disturbance rejection control strategy of PMSM is studied. The effects of system parameters and observer bandwidth on stiffness are analyzed. Combined with the state equation mathematical model of the speed loop ADRC, the extended state observer is used to observe and compensate the disturbance. The nonlinear error feedback controller provides fast and stable control error feedback, which improves the robustness of the system. The extended state observer and the nonlinear error feedback controller are analyzed under the condition that the system is not unstable, and its parameter design method is given. Finally, on the basis of theoretical analysis and simulation, the dynamic performance of the sensorless automatic disturbance rejection control system based on the model prediction is verified by using the IPMSM drag loading platform. Acceleration and deceleration experiments verify that the control strategy makes the system have good performance. The bandwidth of current loop and speed loop is tested to verify the effectiveness of the strategy to improve the bandwidth. The stiffness experiment of the active disturbance rejection controller shows that the active disturbance rejection strategy improves the stiffness of the system. The proposed control strategy improves the dynamic performance of the system.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM351;TP273
【參考文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 林茂;李穎暉;吳辰;袁國強;李辰;;基于滑模模型參考自適應系統(tǒng)觀測器的永磁同步電機預測控制[J];電工技術(shù)學報;2017年06期
2 左月飛;符慧;劉闖;張捷;胡燁;;考慮轉(zhuǎn)速濾波的永磁同步電動機轉(zhuǎn)速伺服系統(tǒng)改進型自抗擾控制器[J];電工技術(shù)學報;2016年09期
3 李潔;周波;劉兵;王龍;倪天恒;徐學海;時仁帥;;表貼式永磁同步電機無位置傳感器起動新方法[J];中國電機工程學報;2016年09期
4 張國強;王高林;徐殿國;付炎;倪榮剛;;基于自適應陷波濾波器的內(nèi)置式永磁電機轉(zhuǎn)子位置觀測方法[J];中國電機工程學報;2016年09期
5 陸ZK泉;林鶴云;韓俊林;;永磁同步電機的擾動觀測器無位置傳感器控制[J];中國電機工程學報;2016年05期
6 王莉娜;郝強;;基于高頻方波信號注入的PMSM無傳感器低速運行研究[J];電氣傳動;2015年06期
7 劉海東;周波;郭鴻浩;劉兵;李潔;徐學海;時仁帥;;脈振高頻信號注入法誤差分析[J];電工技術(shù)學報;2015年06期
8 周揚忠;龍世鵬;;基于轉(zhuǎn)子高頻脈動電流注入的同步電動機無位置傳感器型直接轉(zhuǎn)矩控制[J];中國電機工程學報;2015年01期
9 高志強;;自抗擾控制思想探究[J];控制理論與應用;2013年12期
10 文建平;曹秉剛;;無速度傳感器的內(nèi)嵌式永磁同步電機自抗擾控制調(diào)速系統(tǒng)[J];中國電機工程學報;2009年30期
中國博士學位論文全文數(shù)據(jù)庫 前1條
1 許振偉;永磁交流伺服系統(tǒng)及其控制策略研究[D];浙江大學;2003年
中國碩士學位論文全文數(shù)據(jù)庫 前5條
1 聶文田;基于頻域指標的擴張狀態(tài)觀測器參數(shù)配置方法及應用研究[D];哈爾濱工業(yè)大學;2015年
2 徐進;基于預測控制的電梯永磁曳引機無稱重傳感器起動策略研究[D];哈爾濱工業(yè)大學;2015年
3 張捷;永磁同步電機伺服系統(tǒng)的自抗擾控制技術(shù)研究[D];南京航空航天大學;2015年
4 張國強;基于全階滑模觀測器的IPMSM無位置傳感器控制策略研究[D];哈爾濱工業(yè)大學;2013年
5 牛里;交流永磁同步伺服系統(tǒng)電流環(huán)帶寬拓展技術(shù)研究[D];哈爾濱工業(yè)大學;2010年
,本文編號:1939854
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1939854.html