基于超聲導(dǎo)波的道岔鋼軌軌頭損傷實(shí)時(shí)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)
本文選題:超聲導(dǎo)波 + 道岔鋼軌。 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:鐵路作為目前主要的交通運(yùn)輸方式之一,使人們的出行和貨運(yùn)更加快捷便利。然而,長(zhǎng)期以來(lái)鋼軌損傷一直是影響鐵路運(yùn)輸安全的關(guān)鍵因素,其嚴(yán)重威脅列車的行車安全,是導(dǎo)致重大安全事故的重要因素之一。道岔是鐵路軌道設(shè)備中最重要的組成部分,道岔鋼軌的結(jié)構(gòu)復(fù)雜性使其成為鐵路軌道系統(tǒng)中最難維護(hù)、最薄弱的部分,且極易產(chǎn)生損傷。因此,對(duì)道岔鋼軌損傷進(jìn)行實(shí)時(shí)監(jiān)測(cè)具有重要的意義。本文基于超聲導(dǎo)波檢測(cè)方法,對(duì)道岔鋼軌軌頭損傷實(shí)時(shí)監(jiān)測(cè)系統(tǒng)進(jìn)行研究。首先對(duì)系統(tǒng)方案和檢測(cè)算法進(jìn)行了設(shè)計(jì)。為了不影響列車正常運(yùn)行以及便于探頭的安裝固定,本文選用了 PZT壓電陶瓷的超聲波探頭并安裝于鋼軌軌頭側(cè)面。同時(shí),為了減小檢測(cè)盲區(qū),采用發(fā)送與接收探頭分開(kāi)的布置方式,并通過(guò)實(shí)驗(yàn)方式確定超聲波發(fā)射探頭的激勵(lì)頻率為180kHz。系統(tǒng)損傷檢測(cè)方法采用超聲導(dǎo)波回波互相關(guān)算法,通過(guò)MATLAB仿真驗(yàn)證了算法的可行性。在此基礎(chǔ)上,本文完成了系統(tǒng)的軟硬件設(shè)計(jì),系統(tǒng)以ARM數(shù)據(jù)處理模塊為核心,其主要包括超聲導(dǎo)波發(fā)射電路、超聲導(dǎo)波接收電路、FPGA數(shù)據(jù)采集電路、LCD顯示電路等模塊。系統(tǒng)通過(guò)發(fā)射電路中的信號(hào)隔離、驅(qū)動(dòng)以及升壓電路激勵(lì)超聲導(dǎo)波探頭;通過(guò)接收電路中的限幅保護(hù)、有源帶通濾波電路實(shí)現(xiàn)對(duì)超聲導(dǎo)波信號(hào)的調(diào)理,從而保證FPGA數(shù)據(jù)采集電路對(duì)信號(hào)的正常采集。此外,由ARM控制LCD實(shí)現(xiàn)波形的顯示、系統(tǒng)參數(shù)設(shè)置以及系統(tǒng)調(diào)試。最后,論文完成了系統(tǒng)的軟硬件聯(lián)調(diào),驗(yàn)證了系統(tǒng)硬件與軟件功能的正確性。實(shí)驗(yàn)結(jié)果表明系統(tǒng)能夠正常工作且ARM平臺(tái)與MATLAB平臺(tái)下的互相關(guān)算法對(duì)數(shù)據(jù)處理的相對(duì)誤差低于0.4%,符合系統(tǒng)設(shè)計(jì)要求。同時(shí),通過(guò)人為引入軌頭損傷的模擬實(shí)驗(yàn),驗(yàn)證了監(jiān)測(cè)系統(tǒng)對(duì)鋼軌軌頭損傷識(shí)別的可行性。
[Abstract]:As one of the main modes of transportation, railway makes people's travel and freight more convenient. However, rail damage has long been a key factor affecting the safety of railway transportation, which seriously threatens the safety of trains and is one of the important factors leading to major safety accidents. Turnout is the most important part of railway track equipment. The structural complexity of switch rail makes it the most difficult to maintain the weakest part of the railway track system and easily cause damage. Therefore, it is of great significance to monitor the rail damage in real time. Based on ultrasonic guided wave detection method, the real-time damage monitoring system of turnout rail head is studied in this paper. First, the system scheme and detection algorithm are designed. In order not to affect the normal operation of the train and to facilitate the installation and fixation of the probe, the PZT piezoelectric ceramic ultrasonic probe is selected and installed on the side of the rail head. At the same time, in order to reduce the blind area of detection, a separate arrangement of transmitting and receiving probes is adopted, and the excitation frequency of ultrasonic transmitting probe is determined to be 180 kHz by experiment. The system damage detection method adopts ultrasonic guided echo cross-correlation algorithm, and the feasibility of the algorithm is verified by MATLAB simulation. On this basis, the software and hardware design of the system is completed. The system takes the ARM data processing module as the core, which mainly includes the ultrasonic guided wave transmitting circuit, the ultrasonic guided wave receiving circuit and the ARM data acquisition circuit and the LCD display circuit and so on. The system excites the ultrasonic guided wave probe through the signal isolation, drive and boost circuit in the transmitting circuit, and realizes the modulation of the ultrasonic guided wave signal through the limiting protection in the receiving circuit, and the active bandpass filter circuit. In order to ensure the normal acquisition of FPGA data acquisition circuit. In addition, ARM controls LCD to realize waveform display, system parameter setting and system debugging. Finally, the hardware and software alignment of the system is completed, which verifies the correctness of the system hardware and software functions. The experimental results show that the system can work normally and the relative error of the cross-correlation algorithm based on ARM platform and MATLAB platform is less than 0.4, which conforms to the design requirements of the system. At the same time, the feasibility of the monitoring system for rail head damage identification is verified by the simulation experiment of artificially introducing rail head damage.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U216.3;TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李建平;;鐵路鋼軌傷損原因分析與防治[J];科技經(jīng)濟(jì)導(dǎo)刊;2016年09期
2 馮超;黎雙周;范中原;;基于軌道電路原理的斷軌檢測(cè)方法研究[J];蘭州工業(yè)學(xué)院學(xué)報(bào);2015年04期
3 嚴(yán)益;;中國(guó)鐵路建設(shè)將進(jìn)入新一輪發(fā)展機(jī)遇期[J];今日工程機(jī)械;2014年06期
4 胡劍虹;唐志峰;蔣金洲;呂福在;潘曉弘;;道岔鋼軌軌底缺陷的導(dǎo)波檢測(cè)技術(shù)研究[J];中國(guó)鐵道科學(xué);2014年03期
5 葉肖偉;姜洋;倪一清;蘇娟;董小鵬;肖杰靈;;基于FBG反射譜特征的鐵路道岔?yè)p傷識(shí)別試驗(yàn)研究[J];振動(dòng)與沖擊;2014年06期
6 盧超;李誠(chéng);?〗;;鋼軌軌底垂直振動(dòng)模式導(dǎo)波檢測(cè)技術(shù)的實(shí)驗(yàn)研究[J];實(shí)驗(yàn)力學(xué);2012年05期
7 孟繁順;;淺談鐵路鋼軌斷裂的原因及預(yù)防措施[J];鐵道建筑技術(shù);2011年10期
8 謝維達(dá);周宇恒;寇若嵐;;一種改進(jìn)的快速歸一化互相關(guān)算法[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年08期
9 田銘興;陳云峰;趙斌;閔永智;;實(shí)時(shí)斷軌檢測(cè)方法綜述[J];蘭州交通大學(xué)學(xué)報(bào);2011年01期
10 史宏章;任遠(yuǎn);張友鵬;田銘興;;國(guó)內(nèi)外斷軌檢測(cè)技術(shù)發(fā)展的現(xiàn)狀與研究[J];鐵道運(yùn)營(yíng)技術(shù);2010年04期
相關(guān)博士學(xué)位論文 前1條
1 王冰;超聲導(dǎo)波在電廠管道完整性監(jiān)測(cè)中的應(yīng)用研究[D];華北電力大學(xué)(北京);2010年
相關(guān)碩士學(xué)位論文 前10條
1 范振中;鐵路道岔尖軌及長(zhǎng)心軌導(dǎo)波檢測(cè)技術(shù)研究[D];中國(guó)鐵道科學(xué)研究院;2016年
2 楊臻W,
本文編號(hào):1935238
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1935238.html