少稀土輪輻式組合永磁型同步電機(jī)控制系統(tǒng)的研究與設(shè)計(jì)
本文選題:少稀土電機(jī) + 氣隙磁場(chǎng)畸變。 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:稀土永磁無(wú)刷電機(jī)雖因具有能量密度大,調(diào)速范圍寬,結(jié)構(gòu)簡(jiǎn)單等特點(diǎn)而被廣泛應(yīng)用于汽車傳動(dòng)領(lǐng)域,但在當(dāng)前稀土價(jià)格不斷上漲的背景下,其制作成本已成為不能忽視的問題。本文所研究的少稀土輪輻式組合永磁型同步電機(jī)(Hybrid Permanent Magnet Motor,HPMM),其勵(lì)磁源使用價(jià)格便宜的鐵氧體非稀土永磁材料替代部分釹鐵硼稀土永磁材料,并通過設(shè)計(jì)輪輻狀轉(zhuǎn)子結(jié)構(gòu)來(lái)彌補(bǔ)鐵氧體永磁部分因矯頑力較低所帶來(lái)的電磁性能不足,從而在減少稀土材料使用量的基礎(chǔ)上,獲得不弱于稀土永磁無(wú)刷電機(jī)的性能,可減少電機(jī)制作成本。但HPMM主要受組合勵(lì)磁方式、轉(zhuǎn)子結(jié)構(gòu)復(fù)雜和電機(jī)加工工藝等因素的影響,氣隙磁場(chǎng)出現(xiàn)畸變,再加上逆變器非線性、電感波動(dòng)等因素的影響,在傳統(tǒng)控制下運(yùn)行時(shí),繞組相電流中存在大量諧波,導(dǎo)致電機(jī)出現(xiàn)溫度過熱、效率降低等問題。因此,為驗(yàn)證HPMM實(shí)際性能,實(shí)現(xiàn)HPMM穩(wěn)定高效運(yùn)行,文章將重點(diǎn)對(duì)HPMM的控制系統(tǒng)進(jìn)行研究,并對(duì)HPMM運(yùn)行時(shí)的諧波電流進(jìn)行分析與抑制。首先針對(duì)HPMM的研究背景及結(jié)構(gòu)特點(diǎn)進(jìn)行介紹,闡述了HPMM的運(yùn)行原理。然后基于轉(zhuǎn)子磁場(chǎng)定向控制算法設(shè)計(jì)HPMM控制系統(tǒng)。轉(zhuǎn)速環(huán)采用復(fù)合PI控制器,可有效解決傳統(tǒng)轉(zhuǎn)速環(huán)PI控制器參數(shù)難整定的問題;電流環(huán)采用反電勢(shì)補(bǔ)償PI控制器,可消除轉(zhuǎn)速變化時(shí)反電勢(shì)對(duì)系統(tǒng)的影響,提高控制系統(tǒng)性能,最后通過仿真與實(shí)驗(yàn)對(duì)HPMM及所設(shè)計(jì)控制系統(tǒng)的性能分別進(jìn)行驗(yàn)證。針對(duì)HPMM實(shí)際運(yùn)行時(shí)出現(xiàn)的相電流畸變現(xiàn)象,分別從電機(jī)本體參數(shù)不理想和逆變器非線性兩個(gè)方面詳細(xì)解釋諧波電流的主要成因。根據(jù)HPMM實(shí)際相電流中的諧波成分,建立d-q軸系下的諧波電流數(shù)學(xué)模型。并對(duì)PI控制器無(wú)法完全消除d-q軸電流波動(dòng)的原因進(jìn)行分析與驗(yàn)證。為消除諧波電流,文章采用電流環(huán)PI控制器并聯(lián)諧振調(diào)節(jié)器的方法,在電流環(huán)構(gòu)成比例積分諧振器,來(lái)消除d-q軸電流的波動(dòng),從而實(shí)現(xiàn)對(duì)三相諧波電流的統(tǒng)一抑制。最后分別在仿真與實(shí)驗(yàn)中對(duì)所用諧波電流抑制算法的有效性進(jìn)行驗(yàn)證。仿真與實(shí)驗(yàn)結(jié)果表明:HPMM能夠在本文設(shè)計(jì)的控制系統(tǒng)下獲得理想的動(dòng)態(tài)性能,但穩(wěn)態(tài)時(shí)相電流畸變也很明顯。將比例積分諧振器應(yīng)用到HPMM控制系統(tǒng)中,能有效抑制相電流中的諧波電流,實(shí)現(xiàn)電機(jī)穩(wěn)定高效運(yùn)行。本文所設(shè)計(jì)的控制系統(tǒng)能較好地體現(xiàn)HPMM性能,所用比例積分諧振控制器結(jié)構(gòu)簡(jiǎn)單,諧波電流抑制效果明顯,且只需在軟件中實(shí)現(xiàn),無(wú)需增加硬件電路,為以后針對(duì)電機(jī)諧波電流抑制方法的研究提供了借鑒。
[Abstract]:Although rare earth permanent magnet brushless motor is widely used in automobile transmission field because of its characteristics of high energy density, wide speed range and simple structure, but under the background of the rising price of rare earth, Its production cost has become a problem that can not be ignored. In this paper, the hybrid Permanent Magnet motor and HPMM are studied. The excitation source uses cheap ferrite non-rare earth permanent magnetic materials to replace some NdFeB rare earth permanent magnetic materials. The structure of the wheel spoke rotor is designed to make up for the lack of electromagnetic performance caused by the low coercivity of the ferrite permanent magnet, so that the performance of the permanent magnet brushless motor is not weaker than that of the rare earth permanent magnet brushless motor on the basis of reducing the use of rare earth materials. Can reduce the cost of motor production. However, the HPMM is mainly affected by the combined excitation mode, the complex rotor structure and the machining process of the motor, the distortion of the air gap magnetic field, the nonlinear of the inverter, the fluctuation of the inductance, and so on. There are a lot of harmonics in the winding phase current, which causes the motor to overheat and reduce the efficiency. Therefore, in order to verify the actual performance of HPMM and realize the stable and efficient operation of HPMM, the control system of HPMM will be studied in this paper, and the harmonic current of HPMM will be analyzed and suppressed. Firstly, the research background and structure characteristics of HPMM are introduced, and the operation principle of HPMM is expounded. Then the HPMM control system is designed based on the rotor flux oriented control algorithm. Using compound Pi controller in rotational speed loop can effectively solve the problem that the parameters of Pi controller of traditional rotational speed ring are difficult to adjust, and Pi controller with reverse EMF compensation in current loop can eliminate the influence of reverse EMF on system when speed changes, and improve the performance of control system. Finally, the performance of HPMM and the designed control system are verified by simulation and experiment. In view of the phase current distortion in HPMM, the main causes of harmonic current are explained in detail from two aspects: the motor body parameter is not ideal and the inverter is nonlinear. According to the harmonic components in the actual phase current of HPMM, the mathematical model of harmonic current in d-q shafting is established. The reason why Pi controller can not completely eliminate the current fluctuation of d-q axis is analyzed and verified. In order to eliminate the harmonic current, a proportional integral resonator is formed in the current loop by using the Pi controller of the current loop to parallel the resonant regulator to eliminate the fluctuation of d-q axis current, thus realizing the unified suppression of the three-phase harmonic current. Finally, the effectiveness of the harmonic current suppression algorithm is verified in simulation and experiment. The simulation and experimental results show that the control system designed in this paper can obtain ideal dynamic performance, but the phase current distortion is also obvious in steady state. The proportional integral resonator is applied to the HPMM control system, which can effectively suppress the harmonic current in the phase current and realize the stable and efficient operation of the motor. The control system designed in this paper can better reflect the performance of HPMM. The proportional integral resonant controller is simple in structure, the effect of harmonic current suppression is obvious, and it only needs to be realized in software without adding hardware circuit. It provides a reference for the research of harmonic current suppression method in the future.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM341;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 左月飛;張捷;劉闖;張濤;;針對(duì)時(shí)變輸入的永磁同步電機(jī)改進(jìn)型自抗擾控制器[J];電工技術(shù)學(xué)報(bào);2017年02期
2 左月飛;劉闖;張捷;符慧;張濤;;永磁同步電動(dòng)機(jī)轉(zhuǎn)速伺服系統(tǒng)PI控制器的一種新設(shè)計(jì)方法[J];電工技術(shù)學(xué)報(bào);2016年13期
3 李世軍;羅隆福;佘雙翔;劉星平;施曉蓉;;基于空間矢量和特定消諧脈寬調(diào)制的三電平逆變器調(diào)制方法[J];電工技術(shù)學(xué)報(bào);2015年12期
4 符慧;左月飛;劉闖;張捷;;永磁同步電機(jī)轉(zhuǎn)速環(huán)的一種變結(jié)構(gòu)PI控制器[J];電工技術(shù)學(xué)報(bào);2015年12期
5 劉剛;孫慶文;肖燁然;;永磁同步電機(jī)用坐標(biāo)變換的電流諧波抑制方法[J];電機(jī)與控制學(xué)報(bào);2015年05期
6 王賀超;夏長(zhǎng)亮;閻彥;史婷娜;;基于諧振控制的表貼式永磁同步電機(jī)弱磁區(qū)電流諧波抑制[J];電工技術(shù)學(xué)報(bào);2014年09期
7 周明磊;游小杰;王琛琛;王劍;李強(qiáng);;電流諧波最小PWM開關(guān)角的計(jì)算及諧波特性分析[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年15期
8 陳益廣;;分?jǐn)?shù)槽集中繞組永磁同步電機(jī)的電感計(jì)算[J];電工技術(shù)學(xué)報(bào);2014年03期
9 李毅拓;陸海峰;瞿文龍;盛爽;;基于諧振調(diào)節(jié)器的永磁同步電機(jī)電流諧波抑制方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年03期
10 周明磊;游小杰;王琛琛;李強(qiáng);;特定次諧波消除調(diào)制方式的諧波特性分析[J];電工技術(shù)學(xué)報(bào);2013年09期
相關(guān)碩士學(xué)位論文 前10條
1 朱峰;車用寬調(diào)速磁場(chǎng)增強(qiáng)型永磁無(wú)刷電機(jī)控制策略的研究[D];江蘇大學(xué);2016年
2 顧瑋瑋;電動(dòng)汽車用少稀土組合勵(lì)磁永磁無(wú)刷電機(jī)的設(shè)計(jì)與分析[D];江蘇大學(xué);2016年
3 王琳;少稀土輪輻式組合永磁型同步電機(jī)的設(shè)計(jì)與分析[D];江蘇大學(xué);2016年
4 張紀(jì)元;電動(dòng)汽車用少稀土內(nèi)置弧形永磁同步電機(jī)的研究[D];哈爾濱工業(yè)大學(xué);2014年
5 王偉男;電動(dòng)汽車用少稀土內(nèi)置V型永磁同步電機(jī)的研究[D];哈爾濱工業(yè)大學(xué);2014年
6 張鵬;少稀土內(nèi)置U型永磁同步電機(jī)電磁、振動(dòng)與噪聲的研究[D];哈爾濱工業(yè)大學(xué);2014年
7 張榮建;基于諧波電流注入法的永磁同步電機(jī)轉(zhuǎn)矩脈動(dòng)抑制策略[D];哈爾濱工業(yè)大學(xué);2014年
8 方曉龍;日本新能源汽車產(chǎn)業(yè)發(fā)展戰(zhàn)略分析[D];吉林大學(xué);2014年
9 代攀;永磁同步電機(jī)電流環(huán)諧波抑制技術(shù)研究[D];華中科技大學(xué);2014年
10 吳慧星;中國(guó)新能源汽車產(chǎn)業(yè)發(fā)展策略分析[D];復(fù)旦大學(xué);2012年
,本文編號(hào):1933592
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1933592.html