基于Spark和神經(jīng)網(wǎng)絡的風電機組發(fā)電機狀態(tài)監(jiān)測
本文選題:狀態(tài)監(jiān)測 + 小波神經(jīng)網(wǎng)絡; 參考:《華北電力大學》2017年碩士論文
【摘要】:風能,作為可再生能源,無窮無盡,清潔環(huán)保,已成為許多國家可持續(xù)發(fā)展戰(zhàn)略的一個重要組成部分,因此,風力發(fā)電得到了迅速的發(fā)展。風電機組工作環(huán)境惡劣,長期受到正常和極端溫度、降雨、積雪、沙塵、太陽輻射等環(huán)境因素的影響,各部件也必將不可避免隨著運行時間的變化而老化,可靠性下降,導致故障發(fā)生,影響風電場的安全穩(wěn)定。風力發(fā)電機作為風電機組故障率較高的部件,對其進行實時狀態(tài)監(jiān)測,及時發(fā)現(xiàn)故障征兆,確定合理的維護方案,對降低維護成本和提高機組的可靠性具有重大意義。目前,風電機組通過傳感器實時地采集其重要參數(shù),這將使得存儲數(shù)據(jù)從GB級上升到TB級,甚至是PB級。在大數(shù)據(jù)背景下,如何能夠快速的處理日益增長的海量狀態(tài)監(jiān)測數(shù)據(jù),并且能夠準確地分析當前情況下風力發(fā)電機的運行狀態(tài)成為了新的課題。在此背景下,本文采用溫度趨勢分析的方法對上述問題展開研究。(1)在能夠獲取風力發(fā)電機實時監(jiān)測數(shù)據(jù)的基礎上,建立了用于風力發(fā)電機溫度預測的小波神經(jīng)網(wǎng)絡模型。通過相關系數(shù)法對風力發(fā)電機溫度的影響因素進行分析,確定了網(wǎng)絡輸入,通過試湊法得到網(wǎng)絡隱含層神經(jīng)元個數(shù),從而確定網(wǎng)絡結(jié)構(gòu)。(2)針對在使用風機監(jiān)測數(shù)據(jù)對小波神經(jīng)網(wǎng)絡訓練時出現(xiàn)的收斂速度慢、易陷入局部最優(yōu)現(xiàn)象,本文采用改進的花朵授粉算法對小波神經(jīng)網(wǎng)絡的參數(shù),包括權(quán)值、伸縮因子和平移因子進行優(yōu)化。通過引入混沌序列和t分布變異,使花朵授粉算法具有更好的尋優(yōu)能力,加快了小波神經(jīng)網(wǎng)絡的訓練速度,提高了精度。(3)針對海量風電機組狀態(tài)監(jiān)測數(shù)據(jù),本文提出了改進的并行化花朵授粉算法優(yōu)化小波神經(jīng)網(wǎng)絡(CITDMFPA-WNN)模型,并將該模型部署在Spark平臺上,利用優(yōu)化后的參數(shù)進行溫度預測。通過引入并行化,提高計算速度,使算法具備處理海量數(shù)據(jù)的能力。(4)采用上述模型利用風力發(fā)電機實時監(jiān)測數(shù)據(jù)進行風力發(fā)電機溫度預測,然后采用滑動窗口統(tǒng)計方法對溫度殘差,即預測溫度值與實際溫度值的差值,進行分析來確定對風力發(fā)電機工作異常監(jiān)測時所需的均值和標準差的閾值,從而確定風力發(fā)電機的實時運行狀態(tài),達到在線狀態(tài)監(jiān)測的目的。最后,進行了對比實驗和算例分析。選用我國內(nèi)蒙古某風電場的真實運行數(shù)據(jù),在實驗室搭建了云計算集群,對本文提出的算法進行性能測試和風力發(fā)電機狀態(tài)監(jiān)測驗證。實驗表明本文設計的算法具有良好的準確性和并行性,并且能夠應用于風力發(fā)電機的狀態(tài)監(jiān)測。
[Abstract]:Wind energy, as a renewable energy, is endless, clean and environmental protection, has become an important part of the sustainable development strategy of many countries. Therefore, wind power generation has been developed rapidly. The working environment of wind turbines has been affected by environmental factors such as normal and extreme temperatures, rain, snow, dust, and solar radiation for a long time. It will inevitably deteriorate with the change of running time, decrease the reliability, cause the failure and affect the safety and stability of the wind farm. As a component with high failure rate of the wind turbine, the wind turbine can monitor it in real time, find out the fault symptoms in time, determine the reasonable maintenance scheme, reduce the maintenance cost and improve the maintenance cost. The reliability of the unit is of great significance. At present, the wind turbines collect their important parameters in real time through sensors, which will increase the storage data from the GB level to the TB level, or even the PB level. In the large data background, how to quickly handle the growing mass state monitoring data and accurately analyze the current situation. The running state of the force generator has become a new topic. Under this background, this paper uses the method of temperature trend analysis to study the above problems. (1) on the basis of obtaining real-time monitoring data of wind turbines, a wavelet neural network model for wind generator temperature prediction is established. The influence factors of the motor temperature are analyzed, the network input is determined, the number of neurons in the hidden layer of the network is obtained by the trial and error method, and the network structure is determined. (2) the improved flower pollination algorithm is adopted in this paper in view of the slow convergence speed and the local optimal phenomenon when the wind turbine monitoring data is used in the training of the wavelet neural network. The parameters of the wavelet neural network, including the weight value, the expansion factor and the translation factor, are optimized. By introducing the chaos sequence and the variation of t distribution, the flower pollination algorithm has a better optimization ability, quickening the training speed of the wavelet neural network and improving the precision. (3) the paper puts forward the change of the state monitoring data of the mass wind turbines. The proposed parallel flower pollination algorithm optimizes the wavelet neural network (CITDMFPA-WNN) model, and deploys the model on the Spark platform to make use of the optimized parameters to predict the temperature. By introducing parallelization to improve the computing speed, the algorithm has the ability to deal with massive data. (4) the real-time monitoring of wind turbines is used in this model. The data is used to predict the temperature of the wind generator, and then the statistical method of sliding window is used to analyze the difference between the temperature residual and the actual temperature. The value and the threshold value of the standard deviation for the abnormal monitoring of the wind generator are analyzed to determine the real-time running state of the wind generator and reach the online shape. Finally, the comparison experiment and the example analysis are carried out. The cloud computing cluster is set up in the laboratory of a wind farm in Inner Mongolia, and the performance test and the wind generator state monitoring and verification are carried out in the laboratory. The experiment shows that the algorithm designed in this paper has good accuracy and is good. It can be applied to condition monitoring of wind turbines.
【學位授予單位】:華北電力大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP183;TM315
【參考文獻】
相關期刊論文 前10條
1 楊天晴;王津;楊旭濤;張學杰;;一種Spark環(huán)境下的高效率大規(guī)模圖數(shù)據(jù)處理機制[J];計算機應用研究;2016年12期
2 劉永強;楊紹普;廖英英;王翠艷;;一種自適應共振解調(diào)方法及其在滾動軸承早期故障診斷中的應用[J];振動工程學報;2016年02期
3 方瑞明;江順輝;尚榮艷;王黎;;采用趨勢狀態(tài)分析的風機齒輪箱狀態(tài)在線評估云模型[J];華僑大學學報(自然科學版);2016年01期
4 王保義;王冬陽;張少敏;;基于Spark和IPPSO_LSSVM的短期分布式電力負荷預測算法[J];電力自動化設備;2016年01期
5 曹莉;唐玲;吳浩;高祥;樂英高;;基于改進小波神經(jīng)網(wǎng)絡的短時交通流量預測研究[J];四川理工學院學報(自然科學版);2015年06期
6 舒堅;郭凱;劉群;劉琳嵐;;機會傳感網(wǎng)絡連通性參數(shù)研究[J];計算機學報;2016年05期
7 劉峰波;;大數(shù)據(jù)Spark技術研究[J];數(shù)字技術與應用;2015年09期
8 李旭芳;段春林;張冬波;韓迎春;茍茹君;;遙測數(shù)據(jù)時間序列滑動窗口動態(tài)分割技術[J];飛行器測控學報;2015年04期
9 劉國奇;毛海宇;蒲寶明;朱永峰;黃金;;基于小波神經(jīng)網(wǎng)絡的風機故障診斷[J];小型微型計算機系統(tǒng);2015年07期
10 肖輝輝;萬常選;段艷明;;一種基于復合形法的花朵授粉算法[J];小型微型計算機系統(tǒng);2015年06期
相關博士學位論文 前1條
1 程興國;仿生算法的動態(tài)反饋機制及其并行化實現(xiàn)方法研究[D];華南理工大學;2013年
相關碩士學位論文 前10條
1 王騰;基于VxWorks的風電機組數(shù)據(jù)采集處理及控制系統(tǒng)研究[D];北京交通大學;2015年
2 李文棟;基于Spark的大數(shù)據(jù)挖掘技術的研究與實現(xiàn)[D];山東大學;2015年
3 李偉;風電機組狀態(tài)監(jiān)測與故障診斷系統(tǒng)的設計與實現(xiàn)[D];華南理工大學;2014年
4 李華;基于信息融合的風電機組狀態(tài)監(jiān)測研究[D];內(nèi)蒙古科技大學;2014年
5 唐振坤;基于Spark的機器學習平臺設計與實現(xiàn)[D];廈門大學;2014年
6 齊佳;基于LMD的風力發(fā)電機組振動信號分析[D];哈爾濱理工大學;2014年
7 童超;基于數(shù)據(jù)挖掘方法的風電機組狀態(tài)監(jiān)測研究[D];華北電力大學;2014年
8 鄭思莉;基于小波變換的遙感圖像降噪及質(zhì)量評價研究[D];武漢理工大學;2013年
9 王鳳霞;基于小波神經(jīng)網(wǎng)絡的風力發(fā)電機組故障診斷方法的研究[D];華北電力大學;2013年
10 王鵬;群智能算法的并行化研究及其在圖像配準中的應用[D];江南大學;2008年
,本文編號:1899913
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1899913.html