電子商務環(huán)境下基于預測控制的閉環(huán)供應鏈的仿真研究
本文選題:電子商務 + 閉環(huán)供應鏈 ; 參考:《沈陽理工大學》2017年碩士論文
【摘要】:電子商務是科技信息發(fā)展的產(chǎn)物,它是以信息網(wǎng)絡技術為手段,以商品交換為中心的商務活動,是傳統(tǒng)商業(yè)活動各環(huán)節(jié)的電子化、網(wǎng)絡化、信息化。牛鞭效應是供應鏈中需求信息被放大的現(xiàn)象,它使得供應鏈系統(tǒng)的經(jīng)濟效益受損,嚴重時會導致整個供應鏈的崩潰。電子商務的出現(xiàn)使得閉環(huán)供應鏈網(wǎng)絡變得更加復雜,牛鞭效應對其產(chǎn)生的影響也因此變得更加顯著。預測控制算法已經(jīng)在各個領域得到了廣泛的應用,面對供應鏈管理面臨的新的挑戰(zhàn),專家學者將預測控制算法引入到供應鏈系統(tǒng)的管理中,并得到滿意的控制效果。動態(tài)矩陣控制算法是預測控制算法中典型算法之一,該算法具有實現(xiàn)簡單、控制靈活和應用范圍廣等優(yōu)點。針對電子商務環(huán)境下供應鏈管理中存在的問題,本文對動態(tài)矩陣控制算法在閉環(huán)供應鏈管理中的應用進行研究。牛鞭效應是衡量供應鏈系統(tǒng)最重要的性能指標,本文針對供應鏈中存在的牛鞭效應進行深入研究。牛鞭效應造成庫存成本增加、生產(chǎn)過量、客戶滿意度降低,它產(chǎn)生的主要原因有:需求預測不準、價格波動和訂單增加。為了直觀分析牛鞭效應,本文采用統(tǒng)計分析的方法對其實現(xiàn)量化并通過加強信息共享、減小波動性、建立戰(zhàn)略伙伴關系來削弱和抑制牛鞭效應帶來的負面影響和危害。動態(tài)矩陣控制算法(DMC)包括預測模型、滾動優(yōu)化和反饋校正三部分,文中描述了算法的實現(xiàn)步驟,針對系統(tǒng)參數(shù)的取值給出了選取原則和整定步驟,并使用MATLAB完成了算法編程實現(xiàn),然后分別在單輸入單輸出對象和多輸入多輸出對象的情況下進行仿真實驗,實驗結果表明系統(tǒng)參數(shù)的選取和整定步驟的有效性。將動態(tài)矩陣控制算法應用到電子商務環(huán)境下閉環(huán)供應鏈管理中的實質(zhì)是通過算法的滾動優(yōu)化和反饋校正,不斷調(diào)整供應鏈中節(jié)點企業(yè)的訂貨量和生產(chǎn)量,最終使得供應鏈系統(tǒng)中的牛鞭效應得到削減和抑制。本文建立了雙渠道電子商務閉環(huán)供應鏈網(wǎng)絡的動態(tài)模型,利用卡爾曼濾波器對系統(tǒng)的狀態(tài)、不可測擾動和噪聲進行估計,并推導出預測模型,確定系統(tǒng)目標函數(shù),并提出了二次優(yōu)化的約束優(yōu)化算法,將供應鏈動態(tài)網(wǎng)路管理問題轉(zhuǎn)換成標準二次優(yōu)化問題進行求解。通過仿真實驗結果表明,將DMC算法應用在電子商務環(huán)境下閉環(huán)供應鏈的管理中,能為供應鏈系統(tǒng)提供優(yōu)化的生產(chǎn)庫存策,增強了系統(tǒng)的穩(wěn)定性,提高了鏈中企業(yè)的競爭力,最終實現(xiàn)了整體利益的最大化。
[Abstract]:E-commerce is the product of the development of scientific and technological information. It is a commercial activity with information network technology as the means and commodity exchange as the center. It is the electronic, networked and information of each link of the traditional commercial activities. Bullwhip effect is the phenomenon that the demand information is enlarged in the supply chain, which makes the economic benefit of the supply chain system damaged, and will lead to the collapse of the whole supply chain seriously. The emergence of electronic commerce makes the closed-loop supply chain network more complex, and the bullwhip effect becomes more significant. Predictive control algorithm has been widely used in various fields. In the face of new challenges faced by supply chain management, experts and scholars introduce predictive control algorithm into supply chain management, and obtain satisfactory control effect. Dynamic matrix control algorithm is one of the typical predictive control algorithms, which has the advantages of simple implementation, flexible control and wide application. In this paper, the application of dynamic matrix control algorithm in closed-loop supply chain management is studied. Bullwhip effect is the most important performance index to measure the supply chain system. Bullwhip effect leads to the increase of inventory cost, excessive production and decrease of customer satisfaction. The main reasons are: inaccurate demand forecast, fluctuating price and increasing order. In order to analyze the bullwhip effect intuitively, this paper uses the statistical analysis method to quantify the bullwhip effect and to weaken and restrain the negative influence and harm brought by the bullwhip effect by strengthening the information sharing, reducing the volatility and establishing the strategic partnership. The dynamic matrix control algorithm (DMC) consists of three parts: prediction model, rolling optimization and feedback correction. The implementation steps of the algorithm are described, and the selection principles and tuning steps are given for the selection of system parameters. The algorithm is programmed with MATLAB, and the simulation experiments are carried out in the case of single input, single output object and multiple input and multiple output object, respectively. The experimental results show that the system parameter selection and tuning steps are effective. The essence of applying the dynamic matrix control algorithm to the closed loop supply chain management in the electronic commerce environment is to adjust the order quantity and production capacity of the node enterprises in the supply chain through rolling optimization and feedback correction of the algorithm. Finally, the bullwhip effect in the supply chain system is reduced and restrained. In this paper, the dynamic model of the closed loop supply chain network of dual channel electronic commerce is established. The state, unmeasurable disturbance and noise of the system are estimated by Kalman filter, and the prediction model is derived, and the objective function of the system is determined. A constrained optimization algorithm for quadratic optimization is proposed to transform the dynamic network management problem of supply chain into a standard quadratic optimization problem. The simulation results show that the application of DMC algorithm in the management of closed loop supply chain under electronic commerce environment can provide the supply chain system with optimized production inventory policy, enhance the stability of the system, and improve the competitiveness of enterprises in the chain. Finally realized the overall benefit maximization.
【學位授予單位】:沈陽理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F274;F724.6;TP13
【參考文獻】
相關期刊論文 前10條
1 李世卿;丁寶蒼;;基于動態(tài)矩陣控制的雙層結構預測控制的整體解決方案[J];自動化學報;2015年11期
2 孫建平;齊園園;;動態(tài)矩陣控制在電加熱爐溫度控制中的應用[J];計算機仿真;2013年06期
3 席裕庚;李德偉;林姝;;模型預測控制——現(xiàn)狀與挑戰(zhàn)[J];自動化學報;2013年03期
4 鐘恒;;供應鏈牛鞭效應的成因及其弱化策略的分析[J];經(jīng)營管理者;2010年13期
5 吳響;張敏;馬震;;基于動態(tài)矩陣控制算法的網(wǎng)絡控制系統(tǒng)的研究[J];中國新通信;2010年03期
6 鐘昌寶;聶茂林;徐永其;;基于灰色馬爾柯夫改進模型預測供應鏈獨立需求[J];情報雜志;2009年07期
7 董海;王宛山;李彥平;鞏亞東;;分布式MPC在網(wǎng)絡化制造環(huán)境下SCM中的應用[J];系統(tǒng)仿真學報;2007年06期
8 黃小原,盧震;多分銷中心供應鏈模型及其牛鞭效應的H_∞控制[J];中國管理科學;2003年01期
9 葉丹,戰(zhàn)德臣,徐曉飛,李全龍,李風華;多視圖集成化的動態(tài)聯(lián)盟建模方法[J];高技術通訊;2000年02期
10 李少遠,席裕庚;多模型預測控制的平滑切換[J];上海交通大學學報;1999年11期
,本文編號:1870429
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1870429.html