基于漢語(yǔ)連動(dòng)句的常識(shí)獲取方法研究
本文選題:連動(dòng)句 + 事件語(yǔ)義類(lèi); 參考:《江蘇科技大學(xué)》2017年碩士論文
【摘要】:常識(shí)知識(shí)獲取是人工智能領(lǐng)域一個(gè)重要研究課題也是一個(gè)長(zhǎng)期存在的挑戰(zhàn)。其目標(biāo)是構(gòu)建面向應(yīng)用的大規(guī)模常識(shí)知識(shí)庫(kù)以實(shí)現(xiàn)真正的智能系統(tǒng)。事件的前提常識(shí)和后果常識(shí)作為兩種重要的常識(shí)知識(shí),在自動(dòng)問(wèn)答、自然語(yǔ)言理解、信息檢索等領(lǐng)域都具有極大的應(yīng)用價(jià)值。但是由于常識(shí)知識(shí)具備隱含性、泛在性和基礎(chǔ)性等特點(diǎn),機(jī)器無(wú)法自動(dòng)獲取大量隱含的常識(shí)知識(shí)。連動(dòng)句是現(xiàn)代漢語(yǔ)中一種常見(jiàn)句式,每個(gè)連動(dòng)句都包含兩個(gè)或兩個(gè)以上謂語(yǔ)動(dòng)詞且這兩個(gè)謂語(yǔ)動(dòng)詞是相互依賴(lài)的,它們具備目的、因果、方式等語(yǔ)義關(guān)系。一個(gè)謂語(yǔ)動(dòng)詞即一個(gè)事件,因而連動(dòng)句是描述多個(gè)事件的特殊句式。連動(dòng)句中的事件具有多種語(yǔ)義關(guān)系,所以連動(dòng)句蘊(yùn)含了豐富的事件常識(shí)。連動(dòng)句在人類(lèi)描述語(yǔ)言中大量存在,句式簡(jiǎn)單且有模式可循。因此,連動(dòng)句可作為一個(gè)大規(guī)模易獲取的知識(shí)源,為海量常識(shí)的獲取提供契機(jī)。針對(duì)上述問(wèn)題,本文系統(tǒng)地研究了從漢語(yǔ)連動(dòng)句中獲取前提常識(shí)和后果常識(shí)的理論和方法,具體研究?jī)?nèi)容包括以下三個(gè)方面:首先研究連動(dòng)句識(shí)別方法,本文給出一種基于規(guī)則與統(tǒng)計(jì)的漢語(yǔ)連動(dòng)句識(shí)別方法。為了實(shí)現(xiàn)連動(dòng)句自動(dòng)識(shí)別,該方法從連動(dòng)句形式特征和語(yǔ)義角色兩個(gè)角度構(gòu)建基礎(chǔ)規(guī)則庫(kù),利用統(tǒng)計(jì)學(xué)方法計(jì)算兩個(gè)謂語(yǔ)動(dòng)詞之間的中間詞的特征詞性是被動(dòng)名詞的概率。實(shí)驗(yàn)表明,基于規(guī)則和統(tǒng)計(jì)的方法準(zhǔn)確率達(dá)到75.48%,相較于僅基于規(guī)則的識(shí)別方法提高了14.46%。然后研究連動(dòng)文法構(gòu)建方法,本文以事件語(yǔ)義類(lèi)文法為基礎(chǔ),利用連動(dòng)句的語(yǔ)義特征和句法結(jié)構(gòu),構(gòu)建了自動(dòng)生成連動(dòng)文法規(guī)則,為基于連動(dòng)句的常識(shí)獲取提供理論基礎(chǔ)。最后研究基于連動(dòng)句的常識(shí)獲取方法,本文給出了四種基于漢語(yǔ)連動(dòng)句的常識(shí)獲取方法,分別是:通過(guò)連動(dòng)詞對(duì)的語(yǔ)義獲取常識(shí)、通過(guò)連動(dòng)文法的事元角色獲取常識(shí)、通過(guò)常識(shí)知識(shí)角度獲取常識(shí)和通過(guò)連動(dòng)句的類(lèi)型獲取常識(shí)。然后,基于以上四種方法設(shè)計(jì)了七種問(wèn)題模板及交互腳本,以交互的方式提問(wèn)并引導(dǎo)知識(shí)工程師獲取常識(shí)。為了論證交互過(guò)程的合理性,本文給出了基于二項(xiàng)分布假設(shè)檢驗(yàn)的定量評(píng)估模型來(lái)驗(yàn)證交互過(guò)程的可接受性和有效性。實(shí)驗(yàn)表明,利用本文方法獲取常識(shí),知識(shí)正確率達(dá)到92.5%。
[Abstract]:The acquisition of common sense knowledge is an important research topic in the field of artificial intelligence and a long-standing challenge. The goal is to build an application oriented large scale knowledge base to achieve real intelligent systems. The precondition of the event and the common sense of the consequences are two important common sense knowledge, in automatic question and answer, natural language understanding, and information inspection. The fields of cable are of great value in application. However, because of the implicit, ubiquitous and basic characteristics of common sense knowledge, the machine can not automatically obtain a large number of implicit knowledge. The sentence is a common sentence in modern Chinese, each of which contains two or more than two predicate verbs and the two predicate verbs are the phase. Interdependence, they have semantic relations, such as purpose, causation and way. A predicate verb is an event, so the verb is a special sentence pattern describing many events. The event in the sentence has a variety of semantic relations, so the connection sentence contains a lot of common sense of events. Therefore, the model can be used as a large and easy access knowledge source, which provides an opportunity for the acquisition of mass common sense. In this paper, this paper systematically studies the theory and method of obtaining the common sense and common sense of the precondition from the Chinese serial sentence. The specific research contents include the following three aspects: first of all, the study of the serial sentence. In order to realize the automatic recognition of continuous sentences, this method constructs the basic rule library from two angles of the form feature and the semantic role of the continuous verb sentence. The statistical method is used to calculate the characteristics of the middle word between the two predicate verbs, which is the probability of the passive noun. The experiment shows that the accuracy of the method based on rules and statistics is up to 75.48%. Compared to the rule based recognition method, the method is improved by 14.46%. and then the construction method of continuous grammar is studied. Based on the semantic feature and syntactic structure of the syntactic sentence, this paper constructs the automatic generation of continuous dynamic grammar rules, which is based on connection. The common sense acquisition of dynamic sentences provides a theoretical basis. Finally, the common sense acquisition method based on continuous sentences is studied. In this paper, four methods of common sense acquisition based on Chinese continuous verb are given. Then, the seven problem templates and interactive scripts are designed based on the above four methods, and the knowledge engineers are asked to interactively ask and guide the knowledge engineers to obtain common sense. In order to demonstrate the rationality of the interaction process, this paper gives a quantitative evaluation model based on the two distribution hypothesis testing to verify the acceptability of the interactive process. The experiments show that this method can acquire common sense and the accuracy of knowledge is 92.5%..
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP18;TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曹聰;曹存根;臧良軍;王石;;一種交互式事件常識(shí)知識(shí)的獲取方法[J];中文信息學(xué)報(bào);2016年03期
2 吳宏洲;;分詞技術(shù)的研究與應(yīng)用——一種快速分詞的實(shí)現(xiàn)[J];電腦知識(shí)與技術(shù);2015年06期
3 王亞;陳龍;曹聰;王駒;曹存根;;事件常識(shí)的獲取方法研究[J];計(jì)算機(jī)科學(xué);2015年10期
4 李致遠(yuǎn);馮志勇;王鑫;李元放;饒國(guó)政;;基于本體指標(biāo)的本體版本演變分析方法[J];計(jì)算機(jī)科學(xué)與探索;2016年02期
5 CHEN Bo;Lü Chen;WEI Xiaomei;JI Donghong;;Chinese Semantic Parsing Based on Feature Structure with Recursive Directed Graph[J];Wuhan University Journal of Natural Sciences;2015年04期
6 皇甫素飛;;緊縮構(gòu)式的界定及其句法結(jié)構(gòu)分析[J];浙江工商大學(xué)學(xué)報(bào);2014年05期
7 儲(chǔ)麗莎;;“連動(dòng)式”淺說(shuō)[J];現(xiàn)代語(yǔ)文(語(yǔ)言研究版);2013年11期
8 張旭潔;劉宗田;劉煒;蘇小英;廖濤;;事件與事件本體模型研究綜述[J];計(jì)算機(jī)工程;2013年09期
9 陳波;姬東鴻;呂晨;;基于特征結(jié)構(gòu)的漢語(yǔ)連動(dòng)句語(yǔ)義標(biāo)注研究[J];中文信息學(xué)報(bào);2013年05期
10 張恒;;動(dòng)結(jié)式、V得句和兼語(yǔ)句的比較[J];漢語(yǔ)學(xué)習(xí);2013年04期
相關(guān)博士學(xué)位論文 前2條
1 周文;基于概念的若干知識(shí)表示模型及相關(guān)方法研究[D];上海大學(xué);2007年
2 田雯;人類(lèi)心理常識(shí)的形式化研究[D];中國(guó)科學(xué)院研究生院(計(jì)算技術(shù)研究所);2004年
相關(guān)碩士學(xué)位論文 前4條
1 王亞;基于語(yǔ)義分類(lèi)的常識(shí)知識(shí)獲取方法研究[D];廣西師范大學(xué);2015年
2 李閃閃;支持漢語(yǔ)語(yǔ)句深層分析的本體研究[D];首都師范大學(xué);2013年
3 孫曉華;現(xiàn)代漢語(yǔ)連動(dòng)句及其習(xí)得研究[D];南京師范大學(xué);2008年
4 朱耀;從大規(guī)模Web語(yǔ)料中獲取常識(shí)語(yǔ)料[D];中國(guó)科學(xué)院研究生院(計(jì)算技術(shù)研究所);2008年
,本文編號(hào):1858937
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1858937.html