下肢外骨骼機(jī)器人運(yùn)動(dòng)失穩(wěn)機(jī)理及控制策略的研究
本文選題:下肢外骨骼 + ZMP ; 參考:《新疆大學(xué)》2017年碩士論文
【摘要】:近年來(lái),隨著經(jīng)濟(jì)作物的不斷種植和增長(zhǎng),若能研究出應(yīng)用于農(nóng)業(yè)領(lǐng)域的田間管理與采收的下肢助力外骨骼機(jī)器人,則能大大減輕勞動(dòng)強(qiáng)度,提高勞動(dòng)效率。下肢外骨骼機(jī)器人是一種可穿戴式的人機(jī)一體化機(jī)器人,被穿戴于人身上后,“如影隨形”的跟蹤人的行走來(lái)完成人機(jī)協(xié)調(diào),并能提供助力來(lái)部分取代身體承載負(fù)荷。從而達(dá)到了響應(yīng)人機(jī)協(xié)作的目的。在軍事、農(nóng)業(yè)、工業(yè)、商業(yè)、康復(fù)、護(hù)理等領(lǐng)域有很廣闊的發(fā)展前景。由于步行過(guò)程不理想或步行不協(xié)調(diào)易發(fā)生外界擾動(dòng)干擾而發(fā)生失穩(wěn)現(xiàn)象,為此,基于步態(tài)失穩(wěn)現(xiàn)象對(duì)其下肢外骨骼系統(tǒng)進(jìn)行了分析與研究。外骨骼模型的建立與分析;本文設(shè)計(jì)了一個(gè)具有十二自由度的七連桿下肢外骨骼機(jī)構(gòu),具體針對(duì)此機(jī)構(gòu)的髖關(guān)節(jié)、膝關(guān)節(jié)、踝關(guān)節(jié)及足部等主要部位進(jìn)行了詳盡的設(shè)計(jì)說(shuō)明。該設(shè)計(jì)機(jī)構(gòu)可以使人體穿戴后能正常的步態(tài)行走運(yùn)動(dòng),在行走過(guò)程中輔助行走并提供助力,進(jìn)而對(duì)該機(jī)構(gòu)進(jìn)行動(dòng)力學(xué)分析。動(dòng)態(tài)穩(wěn)定性及運(yùn)動(dòng)過(guò)程中受外界擾動(dòng)參數(shù)變化時(shí)對(duì)其動(dòng)態(tài)穩(wěn)定性的影響分析;首先,基于ZMP理論判據(jù)提出了改進(jìn)的動(dòng)態(tài)穩(wěn)定性評(píng)估方法,并對(duì)下肢外骨骼系統(tǒng)的動(dòng)態(tài)穩(wěn)定性在矢狀面內(nèi)和冠狀面內(nèi)進(jìn)行分析。其次,對(duì)影響下肢外骨骼系統(tǒng)動(dòng)態(tài)穩(wěn)定性的擾動(dòng)參數(shù)進(jìn)行了研究,并進(jìn)行了擾動(dòng)參數(shù)擺動(dòng)角及載重量的變化情況對(duì)下肢外骨骼系統(tǒng)步態(tài)穩(wěn)定性的影響進(jìn)行了仿真分析。動(dòng)態(tài)穩(wěn)定性控制策略分析;人機(jī)機(jī)構(gòu)步態(tài)過(guò)程中,當(dāng)有外界力的干擾時(shí)會(huì)使人機(jī)系統(tǒng)出現(xiàn)失穩(wěn)現(xiàn)象,為恢復(fù)穩(wěn)定需要采取相應(yīng)的主動(dòng)控制策略,以適應(yīng)保持穩(wěn)定狀態(tài)的要求。對(duì)下肢外骨骼系統(tǒng)提出了基于ZMP誤差校正的步行控制策略,以保證外骨骼穿戴者與外骨骼的步態(tài)最大程度的協(xié)調(diào)運(yùn)行。對(duì)基于ZMP步態(tài)實(shí)時(shí)控制其中包括了擴(kuò)大支撐多邊形,改變穿戴者上身姿態(tài)及液壓驅(qū)動(dòng)力補(bǔ)償?shù)目刂浦鲃?dòng)補(bǔ)償控制,并進(jìn)行了模擬仿真,實(shí)驗(yàn)驗(yàn)證了控制策略的可行性。
[Abstract]:In recent years, with the continuous cultivation and growth of cash crops, if we can study the lower limb assisted exoskeleton robot which can be applied in the field of agriculture, it can greatly reduce the labor intensity and improve the labor efficiency. Lower limb exoskeleton robot is a wearable man-machine integrated robot. After being worn on the human body, the robot can follow the human walking to complete the man-machine coordination, and can provide help to partly replace the body load. In order to achieve the purpose of responding to the man-machine cooperation. In the military, agriculture, industry, commerce, rehabilitation, nursing and other fields have a very broad development prospects. Because the walking process is not ideal or the uncoordinated walking is prone to the disturbance of external disturbance, the instability of the lower limb exoskeleton system is analyzed and studied based on the gait instability phenomenon. The exoskeleton model is established and analyzed. A seven-link exoskeleton mechanism with 12 degrees of freedom is designed and explained in detail for the hip joint, knee joint, ankle joint, foot and other main parts of the exoskeleton mechanism. The design mechanism can make the human body walk with normal gait, assist walking and provide power during walking, and then analyze the dynamics of the mechanism. Dynamic stability and dynamic stability are analyzed when the external disturbance parameters change. Firstly, an improved dynamic stability evaluation method based on ZMP theory is proposed. The dynamic stability of exoskeleton system was analyzed in sagittal plane and coronal plane. Secondly, the disturbance parameters which affect the dynamic stability of exoskeleton system of lower extremity are studied, and the effects of swing angle and load of disturbance parameters on the gait stability of exoskeleton system of lower extremity are simulated and analyzed. Dynamic stability control strategy analysis, when the human machine mechanism gait process, when there is external force interference, the man-machine system will appear instability phenomenon, in order to restore stability need to take the corresponding active control strategy to meet the requirements of maintaining stable state. A walking control strategy based on ZMP error correction is proposed for exoskeleton system in order to ensure the maximal coordination between exoskeleton wearer and exoskeleton gait. The real-time control of gait based on ZMP includes extending support polygon changing the upper posture of the wearer and compensating the hydraulic driving force. The simulation results show that the control strategy is feasible.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張向剛;秦開宇;石宇亮;;人體外骨骼服技術(shù)綜述[J];計(jì)算機(jī)科學(xué);2015年08期
2 龍億;杜志江;王偉東;;基于人體運(yùn)動(dòng)意圖卡爾曼預(yù)測(cè)的外骨骼機(jī)器人控制及實(shí)驗(yàn)[J];機(jī)器人;2015年03期
3 邵建兵;程文明;劉放;張則強(qiáng);;五連桿外骨骼助力系統(tǒng)行走步態(tài)模型能量補(bǔ)償[J];機(jī)械設(shè)計(jì);2015年01期
4 邢凱;趙新華;陳煒;侍才洪;郭月;張西正;;外骨骼機(jī)器人的研究現(xiàn)狀及發(fā)展趨勢(shì)[J];醫(yī)療衛(wèi)生裝備;2015年01期
5 劉會(huì)勇;趙青;;下肢外骨骼助行機(jī)器人驅(qū)動(dòng)系統(tǒng)分析[J];機(jī)床與液壓;2013年13期
6 張凱;;單兵外骨骼結(jié)構(gòu)與運(yùn)動(dòng)分析[J];科技創(chuàng)新導(dǎo)報(bào);2011年13期
7 柯顯信;陳玉亮;唐文彬;;人體下肢外骨骼機(jī)器人的發(fā)展及關(guān)鍵技術(shù)分析[J];機(jī)器人技術(shù)與應(yīng)用;2009年06期
8 李慶玲;葉騰茂;杜志江;孫立寧;王東巖;;外骨骼式上肢康復(fù)機(jī)器人力輔助控制[J];哈爾濱工程大學(xué)學(xué)報(bào);2009年02期
9 蔡兆云;肖湘江;;外骨骼機(jī)器人技術(shù)研究綜述[J];國(guó)防科技;2007年12期
10 彭朝琴;付永領(lǐng);趙克;唐志勇;;基于不穩(wěn)定度的仿人型機(jī)器人步態(tài)規(guī)劃方法[J];北京航空航天大學(xué)學(xué)報(bào);2007年08期
,本文編號(hào):1845747
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1845747.html