回轉(zhuǎn)窯煅燒工藝參數(shù)配置優(yōu)化算法研究
本文選題:回轉(zhuǎn)窯 + K-means。 參考:《北方工業(yè)大學(xué)》2017年碩士論文
【摘要】:鋁電解行業(yè)的發(fā)展與中國(guó)經(jīng)濟(jì)的健康發(fā)展息息相關(guān),本論文通過(guò)研究鋁電解生產(chǎn)過(guò)程中各個(gè)階段的工藝流程,旨在提高生產(chǎn)效率、減少資源浪費(fèi)、促進(jìn)安全生產(chǎn)。在鋁電解行業(yè)中,回轉(zhuǎn)窯是對(duì)石油焦進(jìn)行一系列復(fù)雜處理的大型環(huán)狀設(shè)備。通過(guò)研究回轉(zhuǎn)窯煅燒過(guò)程的工藝參數(shù),運(yùn)用數(shù)據(jù)挖掘理論,分析工藝參數(shù)對(duì)煅后焦質(zhì)量參數(shù)的影響,為科學(xué)認(rèn)識(shí)回轉(zhuǎn)窯工藝參數(shù)配置提供幫助。論文研究了鋁電解回轉(zhuǎn)窯煅燒工藝的理論知識(shí)及相關(guān)技術(shù),包括回轉(zhuǎn)窯煅燒工藝流程、回轉(zhuǎn)窯質(zhì)量參數(shù)評(píng)定標(biāo)準(zhǔn),學(xué)習(xí)軟件工程相關(guān)理論,學(xué)習(xí)數(shù)據(jù)挖掘相關(guān)知識(shí),研究課題需要的相關(guān)算法,包括K-means聚類算法、主成分分析法、BP神經(jīng)網(wǎng)絡(luò)算法、粒子群優(yōu)化算法等現(xiàn)代智能領(lǐng)域相關(guān)算法。具體研究?jī)?nèi)容包括:首先,本文研究回轉(zhuǎn)窯煅燒工藝的理論知識(shí)及相關(guān)技術(shù),對(duì)回轉(zhuǎn)窯質(zhì)量參數(shù)進(jìn)行分析,選用煅后焦的粉末電阻率和真密度作為分析對(duì)象,研究數(shù)據(jù)挖掘相關(guān)理論,運(yùn)用K-means聚類分析算法對(duì)回轉(zhuǎn)窯煅燒質(zhì)量參數(shù)進(jìn)行聚類分析,根據(jù)質(zhì)量參數(shù)數(shù)據(jù)與工藝參數(shù)數(shù)據(jù)時(shí)間對(duì)應(yīng)的特點(diǎn),將K-means算法分析后質(zhì)量參數(shù)的分類與工藝參數(shù)的分類對(duì)應(yīng),采用主成分分析法對(duì)工藝參數(shù)訓(xùn)練樣本和測(cè)試樣本降維。其次,本文針對(duì)粒子群算法容易陷入局部極值的問(wèn)題,提出基于鄰代競(jìng)爭(zhēng)的雜交粒子群優(yōu)化算法,通過(guò)融合BP神經(jīng)網(wǎng)絡(luò)挖掘算法,演化成DCHPSO-BP算法,改善收斂效率低和容易陷進(jìn)個(gè)體極值的缺陷,然后對(duì)降維后的工藝參數(shù)樣本進(jìn)行訓(xùn)練學(xué)習(xí),預(yù)測(cè)回轉(zhuǎn)窯工藝參數(shù)對(duì)質(zhì)量參數(shù)的影響,構(gòu)建回轉(zhuǎn)窯配置參數(shù)預(yù)測(cè)模型。最后,運(yùn)用軟件工程的設(shè)計(jì)思想,采用SSH集成架構(gòu),構(gòu)建完整的、輕量級(jí)的J2EE軟件開(kāi)發(fā)模型,設(shè)計(jì)并實(shí)現(xiàn)了回轉(zhuǎn)窯煅后焦質(zhì)量分析系統(tǒng)。系統(tǒng)設(shè)計(jì)的目的是通過(guò)配置工藝參數(shù),使用數(shù)據(jù)挖掘方法預(yù)測(cè)出該工藝參數(shù)配置會(huì)生產(chǎn)出何種類型的煅后焦,并且為企業(yè)生產(chǎn)決策提供幫助。
[Abstract]:The development of aluminum electrolysis industry is closely related to the healthy development of Chinese economy. This paper aims to improve the production efficiency, reduce the waste of resources and promote safe production by studying the technological process of each stage of aluminum electrolysis production.In aluminum electrolysis industry, rotary kiln is a series of complex treatment of petroleum coke ring equipment.By studying the process parameters of rotary kiln calcination process and using data mining theory, the influence of process parameters on calcined coke quality parameters is analyzed, which provides help for scientific understanding of technological parameters configuration of rotary kiln.In this paper, the theoretical knowledge and related technology of aluminum electrolysis rotary kiln calcination process are studied, including the process flow of rotary kiln calcination, the evaluation standard of rotary kiln quality parameters, the relevant theory of software engineering, and the relevant knowledge of data mining.The related algorithms needed in this paper include K-means clustering algorithm, principal component analysis (PCA) algorithm, BP neural network algorithm, particle swarm optimization (PSO) algorithm and so on.The specific research contents include: firstly, this paper studies the theoretical knowledge and related technology of rotary kiln calcination process, analyzes the quality parameters of rotary kiln, and selects the powder resistivity and true density of calcined coke as the analysis object.The related theory of data mining is studied, and the K-means clustering analysis algorithm is used to analyze the calcination quality parameters of rotary kiln. According to the characteristics of the time correspondence between the quality parameters data and the process parameters data,The classification of quality parameters after analysis by K-means algorithm corresponds to the classification of process parameters, and the dimension reduction of process parameters training samples and test samples is adopted by principal component analysis.Secondly, aiming at the problem that particle swarm optimization is easy to fall into local extremum, a hybrid particle swarm optimization algorithm based on neighbor competition is proposed in this paper. By combining BP neural network mining algorithm, the hybrid particle swarm optimization algorithm evolves into DCHPSO-BP algorithm.The defects of low convergence efficiency and easy trapping into individual extremum are improved, then the sample of process parameters after dimension reduction is trained and studied, the influence of process parameters on quality parameters of rotary kiln is predicted, and the prediction model of configuration parameters of rotary kiln is constructed.Finally, using the design idea of software engineering and SSH integrated framework, a complete and lightweight J2EE software development model is constructed, and the quality analysis system of calcined coke in rotary kiln is designed and implemented.The purpose of the system design is to use the data mining method to predict what type of calcined coke will be produced by configuring the process parameters and to provide help for the production decision of the enterprise.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TF351;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 史長(zhǎng)城;;水泥回轉(zhuǎn)窯RBF神經(jīng)網(wǎng)絡(luò)建模研究[J];鄖陽(yáng)師范高等?茖W(xué)校學(xué)報(bào);2016年03期
2 吳進(jìn)寶;;K-means算法研究綜述[J];電子技術(shù)與軟件工程;2014年18期
3 公麗艷;孟憲軍;劉乃僑;畢金峰;;基于主成分與聚類分析的蘋(píng)果加工品質(zhì)評(píng)價(jià)[J];農(nóng)業(yè)工程學(xué)報(bào);2014年13期
4 王磊;;人工神經(jīng)網(wǎng)絡(luò)原理、分類及應(yīng)用[J];科技資訊;2014年03期
5 王瑞峰;孔維珍;詹生正;;雜交粒子群算法在列車運(yùn)行調(diào)整中的應(yīng)用研究[J];計(jì)算機(jī)應(yīng)用研究;2013年06期
6 李明江;唐穎;周力軍;;數(shù)據(jù)挖掘技術(shù)及應(yīng)用[J];中國(guó)新通信;2012年22期
7 于湛麟;李仲秋;任永昌;;SSH框架實(shí)現(xiàn)MVC架構(gòu)的電子商務(wù)軟件平臺(tái)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2012年10期
8 王瑞峰;孔維珍;占雪梅;;基于雜交粒子群算法的FIR數(shù)字濾波器設(shè)計(jì)[J];計(jì)算機(jī)工程與應(yīng)用;2012年20期
9 農(nóng)國(guó)武;喬曉東;朱禮軍;梁冰;徐碩;;基于概念分層和規(guī)則推理的鋁電解決策支持系統(tǒng)[J];輕金屬;2012年02期
10 劉建華;楊榮華;孫水華;;離散二進(jìn)制粒子群算法分析[J];南京大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期
相關(guān)會(huì)議論文 前1條
1 唐存雨;李晉宏;徐潔;;ID3算法在鋁電解生產(chǎn)決策中的應(yīng)用[A];中國(guó)計(jì)量協(xié)會(huì)冶金分會(huì)2013年會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前3條
1 唐勇波;數(shù)據(jù)驅(qū)動(dòng)的大型電力變壓器故障診斷和預(yù)測(cè)研究[D];中南大學(xué);2013年
2 郭峰;基于模糊ARX模型的水泥回轉(zhuǎn)窯預(yù)測(cè)控制算法研究[D];燕山大學(xué);2012年
3 張麗平;粒子群優(yōu)化算法的理論及實(shí)踐[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前6條
1 許麗利;聚類分析的算法及應(yīng)用[D];吉林大學(xué);2010年
2 程可嘉;基于核函數(shù)的模糊聚類算法研究[D];電子科技大學(xué);2009年
3 黃麗;BP神經(jīng)網(wǎng)絡(luò)算法改進(jìn)及應(yīng)用研究[D];重慶師范大學(xué);2008年
4 劉夢(mèng)琳;基于微粒群優(yōu)化算法的聚類分析及其在學(xué)生成績(jī)管理中的應(yīng)用[D];山東師范大學(xué);2007年
5 張美璐;航空武器裝備項(xiàng)目資源計(jì)劃的管理研究[D];西北工業(yè)大學(xué);2007年
6 林玉娥;粒子群優(yōu)化算法的改進(jìn)及其在管道保溫優(yōu)化設(shè)計(jì)中的應(yīng)用[D];大慶石油學(xué)院;2006年
,本文編號(hào):1771339
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1771339.html