天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于區(qū)域卷積神經(jīng)網(wǎng)絡的行人檢測問題研究

發(fā)布時間:2018-04-04 02:38

  本文選題:行人檢測 切入點:卷積神經(jīng)網(wǎng)絡 出處:《杭州電子科技大學》2017年碩士論文


【摘要】:行人檢測一直是機器視覺領域的研究熱點和難點,其在智能監(jiān)控、智能交通和智能機器人等人工智能領域應用越來越廣泛,比如在交通安全領域,利用行人檢測技術可以預判前方及附近是否有行人,若發(fā)現(xiàn)則立即采取緊急制動,這樣能夠有效避免車輛碰撞行人,減少人員傷亡。行人檢測不同于普通目標檢測,行人屬于非剛性目標,在現(xiàn)實生活中,行人穿著各式各樣、人體姿態(tài)千變萬化、所處背景復雜多變、光照不足以及行人之間相互遮擋等情形給這項工作帶來巨大的挑戰(zhàn)。前人提出了許多有效的行人檢測算法,其中最有代表性的是梯度直方圖(Histogram of Oriented Gradient,HOG)特征,但其在更為復雜的背景環(huán)境下檢測效果仍然不是很理想。近年來,深度學習重新進入人們的視角,其中深度卷積神經(jīng)網(wǎng)絡在模式識別方面更是取得了重大的突破,說明了其在特征提取方面的優(yōu)越性。本文在充分研究行人檢測技術以及深度學習尤其是深度卷積神經(jīng)網(wǎng)絡模型的基礎上取得如下成果:(1)設計了基于區(qū)域卷積神經(jīng)網(wǎng)絡的行人檢測系統(tǒng)。針對傳統(tǒng)人工設計的特征提取復雜度高且難以有效表達復雜場景中的行人特征的問題,本文采用深度卷積神經(jīng)網(wǎng)絡模型來進行行人檢測,該模型通過組合低層特征形成更加抽象的高層表示屬性類別或特征,進而從樣本中提取魯棒性更強、更能刻畫圖像的特征向量。由于網(wǎng)絡模型層次較深,需要訓練參數(shù)較多,而人工標注行人的數(shù)據(jù)樣本較少,為了防止訓練過程中的過擬合現(xiàn)象發(fā)生,本文采用微調的方法訓練網(wǎng)絡。最后,通過多組實驗的驗證,與基于HOG特征的方法想比,該算法能夠明顯提升行人檢測的準確率。(2)針對行人檢測系統(tǒng)中采用選擇性搜索算法(Selective Search,SEL)獲取預選區(qū)域效率低下的問題,本文采用Edge Boxes算法優(yōu)化了行人檢測系統(tǒng)。預選窗口的獲取對于行人檢測系統(tǒng)至關重要,利用選擇性搜索算法提取一張圖像的預選區(qū)域需要花費2秒左右,這嚴重影響了整個行人檢測系統(tǒng)的檢測效率。當本文采用Edge Boxes算法提取預選區(qū)域時,雖然檢測準確率沒有明顯的提升,但只需要耗費0.3秒的時間來提取一張圖片的窗口,大大改善了系統(tǒng)的檢測效率。(3)設計了基于快速區(qū)域卷積神經(jīng)網(wǎng)絡的行人檢測框架。針對采用深度卷積神經(jīng)網(wǎng)絡進行特征提取難以保證實時性的問題,本文在網(wǎng)絡模型中引入了感興趣區(qū)域匯聚層(RoI Pooling Layer),通過該層模型只需要對原圖像提取一次卷積特征,并將預選區(qū)域映射到特征圖(Feature Map)中后,得到固定維度的特征向量。實驗表明,使用該方法在保證一定檢測準確率的情況能夠極大的提升檢測速度,改善了算法的實時性和適用性。
[Abstract]:Pedestrian detection has always been a hot and difficult point in the field of machine vision. It has been widely used in intelligent monitoring, intelligent transportation and intelligent robot fields, such as traffic safety.Pedestrian detection technology can be used to pre-judge whether there are pedestrians in the front and nearby. If found, emergency braking can be taken immediately, which can effectively avoid vehicle collision with pedestrians and reduce casualties.Pedestrian detection is different from ordinary target detection. Pedestrians belong to non-rigid targets. In real life, pedestrians wear a variety of clothes, human posture varies, and the background is complex and changeable.Lack of light and mutual occlusion between pedestrians pose a great challenge to the work.Many effective pedestrian detection algorithms have been proposed, among which the most representative one is the gradient histogram of Oriented gradient histogram, but the detection effect is still not satisfactory in the more complex background.In recent years, deep learning has re-entered the perspective of people, among which the deep convolution neural network has made a great breakthrough in pattern recognition, which shows its superiority in feature extraction.In this paper, the pedestrian detection system based on regional convolution neural network is designed based on the research of pedestrian detection technology and depth learning, especially the deep convolution neural network model.Aiming at the high complexity of feature extraction in traditional artificial design and the difficulty of effectively expressing pedestrian features in complex scenes, this paper uses a deep convolution neural network model to detect pedestrians.The model combines lower level features to form more abstract high-level representation attribute classes or features, and then extracts more robust feature vectors from the samples.In order to prevent the over-fitting in training process, the network model is trained by fine-tuning method because of the deep level of the network model and the need for more training parameters, while the number of data samples labeled by manual pedestrian is less.Finally, through the verification of many experiments, compared with the method based on HOG feature, the algorithm can obviously improve the accuracy of pedestrian detection.In this paper, the Edge Boxes algorithm is used to optimize the pedestrian detection system.The acquisition of pre-selected window is very important for pedestrian detection system. It takes about 2 seconds to extract a pre-selected area of an image by selective search algorithm which seriously affects the detection efficiency of the whole pedestrian detection system.When the Edge Boxes algorithm is used to extract the pre-selected region, although the detection accuracy is not significantly improved, it only takes 0.3 seconds to extract a window of a picture.The detection efficiency of the system is greatly improved. A pedestrian detection framework based on fast area convolution neural network is designed.Aiming at the problem that it is difficult to guarantee the real-time performance of feature extraction by using deep convolution neural network, this paper introduces ROI Pooling layer into the network model, through which only one convolution feature is extracted from the original image.The feature vector of the fixed dimension is obtained by mapping the preselected region to the feature map.Experiments show that this method can greatly improve the detection speed and improve the real-time and applicability of the algorithm in the case of certain detection accuracy.
【學位授予單位】:杭州電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41;TP183

【參考文獻】

相關期刊論文 前4條

1 Fei-Yue Wang;Jun Jason Zhang;Xinhu Zheng;Xiao Wang;Yong Yuan;Xiaoxiao Dai;Jie Zhang;Liuqing Yang;;Where Does AlphaGo Go: From Church-Turing Thesis to AlphaGo Thesis and Beyond[J];IEEE/CAA Journal of Automatica Sinica;2016年02期

2 程帥;曹永剛;孫俊喜;劉廣文;韓廣良;;用基于二值化規(guī)范梯度的跟蹤學習檢測算法高效跟蹤目標[J];光學精密工程;2015年08期

3 顧乃杰;趙增;呂亞飛;張致江;;基于多GPU的深度神經(jīng)網(wǎng)絡訓練算法[J];小型微型計算機系統(tǒng);2015年05期

4 余凱;賈磊;陳雨強;徐偉;;深度學習的昨天、今天和明天[J];計算機研究與發(fā)展;2013年09期

,

本文編號:1708006

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1708006.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶f0bb7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com