天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于改進(jìn)粒子群算法的壓縮感知

發(fā)布時(shí)間:2018-03-09 07:13

  本文選題:信號(hào)采樣 切入點(diǎn):壓縮感知 出處:《信號(hào)處理》2017年04期  論文類型:期刊論文


【摘要】:在稀疏信號(hào)處理中,壓縮感知能夠用較低的采樣頻率對(duì)稀疏信號(hào)進(jìn)行壓縮采樣,而信號(hào)重建的問(wèn)題則可歸結(jié)為一個(gè)最優(yōu)化問(wèn)題,并可采用粒子群算法進(jìn)行求解。針對(duì)壓縮感知問(wèn)題,本文對(duì)傳統(tǒng)的粒子群算法進(jìn)行了深入的分析和改進(jìn),得到了粒子數(shù)目的下界,并提出了三維環(huán)形鄰域結(jié)構(gòu)和多群協(xié)作機(jī)制,依此建立了有效的壓縮感知重建方法,且將其應(yīng)用于二維稀疏信號(hào)的重建。最后,本文通過(guò)在模擬和真實(shí)數(shù)據(jù)上實(shí)驗(yàn)結(jié)果驗(yàn)證了這種新型壓縮感知方法的有效性和優(yōu)越性。
[Abstract]:In sparse signal processing, compression sensing can compress and sample sparse signals at a lower sampling frequency, and the problem of signal reconstruction can be reduced to an optimization problem. Particle swarm optimization algorithm can be used to solve the problem. In this paper, the traditional particle swarm optimization algorithm is deeply analyzed and improved, and the lower bound of particle number is obtained, and the three-dimensional ring neighborhood structure and multi-group cooperation mechanism are proposed. Based on this, an effective compression sensing reconstruction method is established and applied to the reconstruction of two-dimensional sparse signals. Finally, the effectiveness and superiority of the new compression sensing method are verified by the experimental results on the simulation and real data.
【作者單位】: 北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院信息科學(xué)系和數(shù)學(xué)及其應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金(61171138)資助
【分類號(hào)】:TP18

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 秦玉靈;孔憲仁;羅文波;;混沌量子粒子群算法在模型修正中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2010年02期

2 陳治明;;新型量子粒子群算法及其性能分析研究[J];福建電腦;2010年05期

3 牛永潔;;一種新型的混合粒子群算法[J];信息技術(shù);2010年10期

4 全芙蓉;;粒子群算法的理論分析與研究[J];硅谷;2010年23期

5 劉衍民;趙慶禎;邵增珍;;一種改進(jìn)的完全信息粒子群算法研究[J];曲阜師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期

6 朱童;李小凡;魯明文;;位置加權(quán)的改進(jìn)粒子群算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年05期

7 熊智挺;譚陽(yáng)紅;易如方;陳賽華;;一種并行的自適應(yīng)量子粒子群算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2011年08期

8 孟純青;;非線性粒子群算法[J];微計(jì)算機(jī)應(yīng)用;2011年08期

9 任偉建;武璇;;一種動(dòng)態(tài)改變學(xué)習(xí)因子的簡(jiǎn)化粒子群算法[J];自動(dòng)化技術(shù)與應(yīng)用;2012年10期

10 劉飛,孫明,李寧,孫德寶,鄒彤;粒子群算法及其在布局優(yōu)化中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2004年12期

相關(guān)會(huì)議論文 前10條

1 朱童;李小凡;魯明文;;位置加權(quán)的改進(jìn)粒子群算法[A];中國(guó)科學(xué)院地質(zhì)與地球物理研究所第11屆(2011年度)學(xué)術(shù)年會(huì)論文集(上)[C];2012年

2 陳定;何炳發(fā);;一種新的二進(jìn)制粒子群算法在稀疏陣列綜合中的應(yīng)用[A];2009年全國(guó)天線年會(huì)論文集(上)[C];2009年

3 陳龍祥;蔡國(guó)平;;基于粒子群算法的時(shí)滯動(dòng)力學(xué)系統(tǒng)的時(shí)滯辨識(shí)[A];第十二屆全國(guó)非線性振動(dòng)暨第九屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2009年

4 于穎;李永生;於孝春;;新型離散粒子群算法在波紋管優(yōu)化設(shè)計(jì)中的應(yīng)用[A];第十一屆全國(guó)膨脹節(jié)學(xué)術(shù)會(huì)議膨脹節(jié)設(shè)計(jì)、制造和應(yīng)用技術(shù)論文選集[C];2010年

5 劉卓倩;顧幸生;;一種基于信息熵的改進(jìn)粒子群算法[A];系統(tǒng)仿真技術(shù)及其應(yīng)用(第7卷)——'2005系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文選編[C];2005年

6 熊偉麗;徐保國(guó);;粒子群算法在支持向量機(jī)參數(shù)選擇優(yōu)化中的應(yīng)用研究[A];2007中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2007年

7 方衛(wèi)華;徐蘭玉;陳允平;;改進(jìn)粒子群算法在大壩力學(xué)參數(shù)分區(qū)反演中的應(yīng)用[A];2012年中國(guó)水力發(fā)電工程學(xué)會(huì)大壩安全監(jiān)測(cè)專委會(huì)年會(huì)暨學(xué)術(shù)交流會(huì)論文集[C];2012年

8 熊偉麗;徐保國(guó);;單個(gè)粒子收斂中心隨機(jī)攝動(dòng)的粒子群算法[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第七分冊(cè))[南京理工大學(xué)學(xué)報(bào)(增刊)][C];2009年

9 馬向陽(yáng);陳琦;;以粒子群算法求解買賣雙方存貨主從對(duì)策[A];第十二屆中國(guó)管理科學(xué)學(xué)術(shù)年會(huì)論文集[C];2010年

10 趙磊;;基于粒子群算法求解多目標(biāo)函數(shù)優(yōu)化問(wèn)題[A];第二十一屆中國(guó)(天津)’2007IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會(huì)議論文集[C];2007年

相關(guān)博士學(xué)位論文 前10條

1 李慶偉;粒子群算法及電廠若干問(wèn)題的研究[D];東南大學(xué);2016年

2 杜毅;多階段可變批生產(chǎn)線重構(gòu)的研究[D];廣東工業(yè)大學(xué);2016年

3 尹浩;求解Web服務(wù)選取問(wèn)題的粒子群算法研究[D];東北大學(xué);2014年

4 王芳;粒子群算法的研究[D];西南大學(xué);2006年

5 安鎮(zhèn)宙;家庭粒子群算法及其奇偶性與收斂性分析[D];云南大學(xué);2012年

6 劉建華;粒子群算法的基本理論及其改進(jìn)研究[D];中南大學(xué);2009年

7 黃平;粒子群算法改進(jìn)及其在電力系統(tǒng)的應(yīng)用[D];華南理工大學(xué);2012年

8 胡成玉;面向動(dòng)態(tài)環(huán)境的粒子群算法研究[D];華中科技大學(xué);2010年

9 張靜;基于混合離散粒子群算法的柔性作業(yè)車間調(diào)度問(wèn)題研究[D];浙江工業(yè)大學(xué);2014年

10 張寶;粒子群算法及其在衛(wèi)星艙布局中的應(yīng)用研究[D];大連理工大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 張忠偉;結(jié)構(gòu)優(yōu)化中粒子群算法的研究與應(yīng)用[D];大連理工大學(xué);2009年

2 李強(qiáng);基于改進(jìn)粒子群算法的艾薩爐配料優(yōu)化[D];昆明理工大學(xué);2015年

3 付曉艷;基于粒子群算法的自調(diào)節(jié)隸屬函數(shù)模糊控制器設(shè)計(jì)[D];河北聯(lián)合大學(xué);2014年

4 余漢森;粒子群算法的自適應(yīng)變異研究[D];南京信息工程大學(xué);2015年

5 梁計(jì)鋒;基于改進(jìn)粒子群算法的交通控制算法研究[D];長(zhǎng)安大學(xué);2015年

6 楊偉;基于粒子群算法的氧樂(lè)果合成過(guò)程建模研究[D];鄭州大學(xué);2015年

7 李程;基于粒子群算法的AS/RS優(yōu)化調(diào)度方法研究[D];陜西科技大學(xué);2015年

8 樊偉健;基于混合混沌粒子群算法求解變循環(huán)發(fā)動(dòng)機(jī)數(shù)學(xué)模型問(wèn)題[D];山東大學(xué);2015年

9 陳百霞;考慮風(fēng)電場(chǎng)并網(wǎng)的電力系統(tǒng)無(wú)功優(yōu)化[D];山東大學(xué);2015年

10 戴玉倩;基于混合動(dòng)態(tài)粒子群算法的軟件測(cè)試數(shù)據(jù)自動(dòng)生成研究[D];江西理工大學(xué);2015年

,

本文編號(hào):1587498

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1587498.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶865bd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com