天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于SAPSO-LSSVM的蛋白質(zhì)模型質(zhì)量評估

發(fā)布時(shí)間:2018-03-08 09:03

  本文選題:蛋白質(zhì) 切入點(diǎn):模型質(zhì)量 出處:《計(jì)算機(jī)應(yīng)用研究》2017年05期  論文類型:期刊論文


【摘要】:針對傳統(tǒng)蛋白質(zhì)模型質(zhì)量評估沒有考慮同源信息的問題,提出了一種基于LS-SVM評估蛋白質(zhì)模型質(zhì)量的方法。綜合模擬退火(simulated annealing,SA)算法跳出局部最優(yōu)解和粒子群(particle swarm optimization,PSO)算法收斂速度快的特點(diǎn),提出了模擬退火粒子群(SAPSO)算法。利用SAPSO算法來優(yōu)化LS-SVM參數(shù)C和γ,最后得到最優(yōu)模型來評估蛋白質(zhì)模型質(zhì)量。實(shí)驗(yàn)結(jié)果表明,經(jīng)SAPSO優(yōu)化LS-SVM參數(shù)所得到的模型評估預(yù)測誤差較小,且預(yù)測值更穩(wěn)定。
[Abstract]:In view of the problem that the traditional protein model quality assessment does not consider the homology information, A method for evaluating the quality of protein model based on LS-SVM is proposed. The algorithm of synthetic simulated annealing and particle swarm optimization (PSOs) can jump out of the local optimal solution and the particle swarm optimization (PSOs) algorithm converges quickly. A simulated annealing particle swarm optimization (SAPSO) algorithm is proposed. SAPSO algorithm is used to optimize the parameters C and 緯 of LS-SVM, and the optimal model is obtained to evaluate the quality of protein model. The experimental results show that the prediction error of model evaluation obtained by SAPSO optimization of LS-SVM parameters is small. And the predicted value is more stable.
【作者單位】: 河南師范大學(xué)計(jì)算機(jī)與信息工程學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(61173071) 河南省高校創(chuàng)新人才支持計(jì)劃項(xiàng)目(2012HASTIT011)
【分類號】:Q51;TP18


本文編號:1583240

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1583240.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b4f57***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com