大規(guī)模復雜場景下室內(nèi)服務機器人導航的研究
本文關(guān)鍵詞: 四叉樹地圖表示 局部路徑規(guī)劃 里程計標定 人機導航 服務機器人 出處:《中國科學技術(shù)大學》2017年博士論文 論文類型:學位論文
【摘要】:機器人導航是機器人領(lǐng)域的一項基本研究,其重要意義在于:在所處環(huán)境中自主移動的是很多種類機器人能夠完成其它復雜任務的前提。近幾十年來,隨著機器人技術(shù)和人工智能技術(shù)的不斷發(fā)展,以及整個社會對服務機器人日益增長的使用需求,學術(shù)界和工業(yè)界都投入大量的資源對機器人導航技術(shù)進行了深入研究和應用探索,使得室內(nèi)機器人的導航技術(shù)日趨成熟。室內(nèi)機器人的導航技術(shù)大體可分為三個發(fā)展階段:工業(yè)機器人階段,家庭服務機器人階段和公共服務機器人階段。公共服務領(lǐng)域場景相比工廠場景和普通家庭場景更加復雜,這給現(xiàn)階段以適應普通家庭環(huán)境為導向的室內(nèi)機器人導航技術(shù)帶來新的問題和挑戰(zhàn),這也是本文研究的大背景。目前主流的室內(nèi)機器人導航框架主要包括三大技術(shù):地圖構(gòu)建,機器人定位和導航規(guī)劃。這些技術(shù)在家庭場景中均已經(jīng)得到長足的發(fā)展和進步,但是將這些技術(shù)應用到大規(guī)模復雜動態(tài)的公共服務場景時,卻面臨著一些工程方法和理論上的困難。針對這些問題,本文提出了一些提出了新的方法或技術(shù)改進,具體的內(nèi)容和創(chuàng)新點如下:1.機器人導航需要有詳細的環(huán)境模型信息,因此適用于大規(guī)模環(huán)境的地圖構(gòu)建算法是機器人導航技術(shù)的基礎(chǔ)工作。通常公共服務場景的面積遠大于普通家庭環(huán)境,可以達到上萬平方米甚至更大的規(guī)模,F(xiàn)有的地圖構(gòu)建算法在大規(guī)模場景地圖構(gòu)建問題中效率低下,需要耗費大量的存儲資源。針對大規(guī)模的場景地圖構(gòu)建問題,本文提出一種基于四叉樹的高效地圖表示方法;并設(shè)計了一套應用于四叉樹地圖的訪問碼機制,利用該機制能夠快速的訪問地圖節(jié)點數(shù)據(jù);最后提出了大規(guī)模環(huán)境下基于四叉樹地圖表示的地圖構(gòu)建方法,實驗表明基于四叉樹的SLAM方法能夠減少50%到70%的內(nèi)存消耗。2.公共服務場景的環(huán)境十分復雜,具有高度的動態(tài)性,環(huán)境中通常存在密集且流動的人群。人群密集環(huán)境下的機器人導航依賴于穩(wěn)定的機器人定位模塊,但是復雜動態(tài)環(huán)境下的機器人定位十分困難。本文分析了動態(tài)環(huán)境下的機器人定位存在的問題及其原因,并設(shè)計了基于里程計標定和環(huán)境自感知的定位改進算法,極大地降低了錯誤觀察對機器人定位的影響,從而顯著提高動態(tài)環(huán)境下機器人定位的魯棒性。3.傳統(tǒng)的機器人導航系統(tǒng)缺乏對環(huán)境中行人因素的考慮,其導航表現(xiàn)并不能滿足公共服務領(lǐng)域場景下Human-aware導航的需求,與人類自身的導航行為相差甚遠。針對當前導航規(guī)劃算法在人機環(huán)境下存在的問題,本文利用激光傳感器對行人進行識別和跟蹤,并對其運動狀態(tài)進行估計和預測;進而利用行人預測信息來改進基于動態(tài)窗口的局部路徑規(guī)劃算法,提高機器人導航在人機交互方面的舒適性,自然性和交互性?偠灾,本文針對傳統(tǒng)機器人導航技術(shù)在公共服務領(lǐng)域應用中存在的不足和問題,分別在地圖構(gòu)建、機器人定位和導航規(guī)劃三個方面提出了新的算法或技術(shù)改進,并實現(xiàn)了一套適用于大規(guī)模復雜環(huán)境下的機器人導航解決方案,并在可佳商場導購機器人項目中得以實施。
[Abstract]:Robot navigation is a basic research field, its significance lies in: in the autonomous mobile environment is a prerequisite for many kinds of robots can perform other complex tasks. In recent decades, with the development of robot technology and artificial intelligence technology, the growing and the whole society of service robot needs academia and industry have invested a lot of resources for robot navigation technology is studied and applied to explore, make indoor robot navigation technology is becoming more and more mature. Indoor robot navigation technology can be divided into three stages: the stage of industrial robots, service robots in the home stage and public service robot scene public service stage. Compared with the factory scene and the ordinary family scene is more complex, this to the stage to adapt the ordinary family oriented indoor environment Robot navigation technology brings new problems and challenges, the background of this paper. The indoor robot navigation framework mainly includes three technologies: map building, robot localization and navigation planning. These technologies in the domestic scene had been considerable development and progress, but the application of these technologies to large-scale complex dynamic the public service scene, there are still some engineering methods and theoretical difficulties. To solve these problems, this paper puts forward some improvement put forward new methods or techniques, specific content and innovation are as follows: 1. robot navigation environment model need detailed information, so it is suitable for large-scale environment map building algorithm the basic work of the robot navigation technology. Usually public service scene area is much larger than the ordinary family environment, can reach tens of thousands of square meters or more The size of the existing map building construction algorithm. The problem of low efficiency in large scale scene map, requires a lot of storage resources. For the large scale scene map building problem, this paper proposes a representation method of efficient map based on the four fork tree; and design a set for the four fork tree map access code mechanism, the use of the mechanism can access the map node data quickly; finally proposes four tree map representation based on a large-scale environment map, experimental results show that the SLAM method based on the four fork tree can be reduced by 50% to 70% of the memory consumption of.2. public service environment is very complex, highly dynamic, intensive and the flow of the crowd usually in the environment. The crowded environment depends on the robot navigation robot positioning module is stable, but the robot in complex dynamic environment ten trapped Difficult. This paper analyzes the existing robot positioning under dynamic environment problems and their causes, and design improved self sensing positioning algorithm and based on the mileage meter calibration, which greatly reduces the error effect of robot localization, which significantly improve the robustness of traditional robot navigation system.3. robot positioning under dynamic environment the lack of pedestrian environment factors into consideration, the navigation performance can not meet the requirements of Human-aware navigation scene of public services, and a far cry from the navigation behavior of human beings. In view of the current navigation planning method in man-machine environment, by using the laser sensor recognition and tracking of pedestrians, and the movement of state estimation and prediction; and then use the pedestrian to improve the local path planning algorithm based on dynamic window information forecasting, improve robot navigation in people Machine interaction comfort, and interactive nature. In short, aiming at the shortcomings and problems of traditional robot navigation technology applied in the field of public service, respectively in map construction, robot localization and navigation planning three aspects put forward the improved algorithm or new technology, robot navigation and implements a set of suitable for mass under the complex environment solution, and can be implemented in the good shopping guide robot project.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TP242
【相似文獻】
相關(guān)期刊論文 前10條
1 陳斌,蔣新松;自治式水下機器人導航與控制若干問題研究[J];機器人;1993年01期
2 宋健;數(shù)字PID算法在噴霧機器人導航系統(tǒng)中的應用[J];濰坊學院學報;2003年06期
3 高玉蘋;渠慎豐;鄭靜;;無線射頻識別在機器人導航中的應用[J];電子測量技術(shù);2006年03期
4 吳曉明;;基于計算機視覺的機器人導航綜述[J];實驗科學與技術(shù);2007年05期
5 李雄;徐宗昌;王凱;;機器人導航中的多傳感器數(shù)據(jù)融合新算法[J];工程圖學學報;2008年01期
6 吳修文;馮曉霞;孫康嶺;魏富奎;;農(nóng)用機器人導航電子地圖的研究[J];農(nóng)業(yè)裝備與車輛工程;2010年03期
7 陸新華,張桂林;室內(nèi)服務機器人導航方法研究[J];機器人;2003年01期
8 蔡衛(wèi)國;馬莉莎;李莉;;電磁誘導式噴霧機器人導航控制設(shè)計[J];機械設(shè)計與制造;2007年04期
9 包加桐;宋愛國;唐鴻儒;熊鵬文;;基于視覺目標跟蹤的偵察機器人導航方法[J];東南大學學報(自然科學版);2012年03期
10 岳大為;東楷涵;劉作軍;王德峰;;基于音頻帶通濾波的排險機器人導航方法[J];河北工業(yè)大學學報;2013年02期
相關(guān)會議論文 前6條
1 馬哲文;齊偉;魯守銀;;基于智能空間的服務機器人導航定位研究[A];第七屆全國信息獲取與處理學術(shù)會議論文集[C];2009年
2 封金星;劉伯勝;;用于水下機器人導航的長基線水聲定位系統(tǒng)[A];新世紀 新機遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊)[C];2001年
3 王Y,
本文編號:1542191
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1542191.html