天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于PSO-SVR的植物纖維地膜抗張強(qiáng)度預(yù)測(cè)研究

發(fā)布時(shí)間:2018-02-26 19:33

  本文關(guān)鍵詞: 植物纖維地膜 抗張強(qiáng)度 預(yù)測(cè)模型 支持向量機(jī)回歸 粒子群算法 正交試驗(yàn)設(shè)計(jì) 出處:《農(nóng)業(yè)機(jī)械學(xué)報(bào)》2017年04期  論文類型:期刊論文


【摘要】:為快速、準(zhǔn)確地對(duì)生產(chǎn)過程中植物纖維地膜抗張強(qiáng)度進(jìn)行預(yù)測(cè),降低生產(chǎn)成本,提高原料利用率,以植物纖維地膜中試平臺(tái)為依托,基于粒子群算法(PSO)優(yōu)化支持向量機(jī)回歸(SVR)模型,結(jié)合正交試驗(yàn)設(shè)計(jì)L25(56)方法,以纖維打漿度、施膠劑添加量、濕強(qiáng)劑添加量、地膜定量、混合比作為模型輸入?yún)?shù),以植物纖維地膜抗張強(qiáng)度為輸出進(jìn)行模擬預(yù)測(cè),并將模擬結(jié)果與SVR、BP、RBF智能算法模型進(jìn)行對(duì)比分析。結(jié)果表明:PSO-SVR模型能夠較好地表達(dá)植物纖維地膜抗張強(qiáng)度與模型參數(shù)間的非線性關(guān)系,并能根據(jù)輸入?yún)?shù)快速準(zhǔn)確地對(duì)植物纖維地膜抗張強(qiáng)度進(jìn)行預(yù)測(cè),測(cè)試集樣本中預(yù)測(cè)值與實(shí)際值間均方誤差、決定系數(shù)和均方根誤差為0.117 N2、0.915、0.342 N;與其他智能算法(SVR、BP、RBF)相比,PSO-SVR算法模型具有更高的適用性與穩(wěn)定性。研究結(jié)果可為生產(chǎn)過程中不同抄造工藝參數(shù)下植物纖維地膜抗張強(qiáng)度的在線監(jiān)控提供參考依據(jù)。
[Abstract]:For fast, accurate of plant fiber in the production process of plastic tensile strength prediction, reduce production cost, improve the utilization rate of raw material, the plant fiber film test platform based on particle swarm optimization (PSO) algorithm based on support vector machine regression (SVR) model, combined with orthogonal design L25 (56) method. The fiber beating degree, sizing agent dosage, wet strength agent addition, film quantitative mixing ratio as the model input parameters, the plant fiber film tensile strength were simulated as output, and the results of the simulation with SVR, BP, RBF intelligent analysis algorithm model. The results show that the PSO-SVR model can the expression of the nonlinear relationship between plant fiber film tensile strength and model parameters of the well, and can quickly and accurately according to the input parameters of plant fiber film tensile strength was predicted, and the actual value between the mean square prediction value in the sample test set Error, coefficient of determination and root mean square error is 0.117 N2,0.915,0.342 N; and other algorithms (SVR, BP, RBF) compared to the PSO-SVR algorithm and the applicability of the model has higher stability. The research results can provide reference basis for on-line monitoring of plant fiber film making process in the production process of different parameters under the tensile strength.

【作者單位】: 東北農(nóng)業(yè)大學(xué)工程學(xué)院;
【基金】:“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD32B02-5)
【分類號(hào)】:TB383.2;TP18

【相似文獻(xiàn)】

相關(guān)期刊論文 前1條

1 陳國(guó)超;成新文;;PSO-SVR在果酒生物活性物質(zhì)預(yù)測(cè)中的應(yīng)用[J];四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年06期

,

本文編號(hào):1539390

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1539390.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f1d8f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com