機(jī)器人的端口受控哈密頓與自適應(yīng)協(xié)調(diào)控制
本文關(guān)鍵詞: 永磁同步電機(jī) 自適應(yīng)控制 端口受控哈密頓 干擾觀測(cè)器 出處:《青島大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著社會(huì)經(jīng)濟(jì)發(fā)展和機(jī)電、電力電子、人工智能等相關(guān)理論以及各種控制策略的日益完善,機(jī)器人技術(shù)已逐漸成熟,并在眾多領(lǐng)域取得較為廣泛的應(yīng)用,發(fā)揮著不可或缺的作用。相應(yīng)的,其控制系統(tǒng)的研究顯得日益重要。作為一個(gè)高階復(fù)雜系統(tǒng),機(jī)器人實(shí)際運(yùn)行過(guò)程中不可避免地會(huì)受到內(nèi)部不確定性參數(shù)和外部擾動(dòng)等因素的影響。如何最大程度地減小這些因素對(duì)系統(tǒng)的影響與干擾,成為機(jī)器人控制策略的研究重點(diǎn)。傳統(tǒng)的機(jī)器人控制方案往往不考慮關(guān)節(jié)驅(qū)動(dòng)電機(jī),僅僅從其動(dòng)力學(xué)角度出發(fā),建立其模型。在此基礎(chǔ)上進(jìn)行控制器設(shè)計(jì),雖然理論上可以取得較好的效果,但在實(shí)際運(yùn)行中卻是差強(qiáng)人意,具有很大的局限性。基于此本課題統(tǒng)籌機(jī)器人動(dòng)力學(xué)與驅(qū)動(dòng)電機(jī),永磁同步電機(jī)(PMSM)作為機(jī)器人驅(qū)動(dòng)電機(jī),在修正模型的基礎(chǔ)上給出了控制器的設(shè)計(jì)過(guò)程與方法。第一,首先介紹了本課題的研究目的和意義,并簡(jiǎn)單闡述了機(jī)器人控制的國(guó)內(nèi)外研究現(xiàn)狀與趨勢(shì)。第二,統(tǒng)籌機(jī)器人動(dòng)力學(xué)模型與關(guān)節(jié)驅(qū)動(dòng)電機(jī)PMSM的數(shù)學(xué)模型,建立了新的機(jī)器人模型。第三,主要研究了機(jī)器人的端口受控哈密頓與自適應(yīng)協(xié)調(diào)控制。分別設(shè)計(jì)求取了端口受控哈密頓控制器與自適應(yīng)控制器,仿真結(jié)果表明,采用該方案后系統(tǒng)跟蹤信號(hào)的快速性良好,同時(shí)也具有較好的穩(wěn)態(tài)性能,初步證實(shí)了協(xié)調(diào)控制策略的可行性。第四,考慮到自適應(yīng)控制自身的局限性,即對(duì)機(jī)器人非內(nèi)部不確定性因素控制不理想。本文在已有方案的基礎(chǔ)上設(shè)計(jì)了干擾觀測(cè)器,兼顧了改善機(jī)器人參數(shù)不確定性和外部擾動(dòng)等缺點(diǎn)。仿真結(jié)果表明,加入干擾觀測(cè)器的機(jī)器人系統(tǒng)在自適應(yīng)與PCHD協(xié)調(diào)控制下具有較高的動(dòng)態(tài)性能與穩(wěn)態(tài)性能,抗干擾能力強(qiáng),預(yù)期效果良好。綜上所述,為最大程度減小內(nèi)外部因素對(duì)機(jī)器人系統(tǒng)的影響與干擾,獲得較好的動(dòng)態(tài)穩(wěn)態(tài)性能,本文以機(jī)器人為研究對(duì)象,給出了端口受控哈密頓與自適應(yīng)協(xié)調(diào)控制方案,并在此基礎(chǔ)上設(shè)計(jì)了干擾觀測(cè)器進(jìn)行仿真驗(yàn)證,獲得了較好的預(yù)期效果。
[Abstract]:With the development of social economy and the improvement of related theories such as electromechanical, power electronics, artificial intelligence and various control strategies, robot technology has gradually matured, and has been widely used in many fields. Play an indispensable role. Accordingly, the study of its control system becomes increasingly important. As a high-order complex system, The robot will inevitably be affected by internal uncertain parameters and external disturbances during the actual operation. How to minimize the impact and interference of these factors on the system, and how to minimize the impact of these factors on the system, and how to minimize the impact of these factors on the system. The traditional robot control scheme often does not consider the joint drive motor, and only builds its model from the angle of its dynamics. On the basis of this, the controller is designed. Although good results can be achieved in theory, it is unsatisfactory in practical operation and has great limitations. Based on this topic, PMSM (permanent Magnet synchronous Motor) is used as the driving motor of robot, and PMSM (permanent Magnet synchronous Motor) is used as the driving motor of robot. On the basis of the modified model, the design process and method of the controller are given. Firstly, the purpose and significance of the research are introduced, and the research status and trend of robot control at home and abroad are briefly described. A new robot model is established by combining the dynamics model of robot with the mathematical model of joint driven motor (PMSM). Third, The port controlled Hamiltonian and adaptive coordinated control of the robot are studied, and the port controlled Hamiltonian controller and the adaptive controller are designed, respectively. The simulation results show that the system tracking signal is fast enough after adopting this scheme. At the same time, it has good steady-state performance, which preliminarily proves the feasibility of coordinated control strategy. 4th, considering the limitations of adaptive control, In this paper, the disturbance observer is designed on the basis of the existing scheme, which takes into account the shortcomings of improving the uncertainty of the robot parameters and the external disturbance. The simulation results show that, The robot system with disturbance observer has high dynamic and steady-state performance under adaptive and PCHD coordinated control, strong anti-jamming ability and good expected effect. In order to minimize the influence and interference of internal and external factors on the robot system and obtain better dynamic steady-state performance, a port controlled Hamiltonian and adaptive coordinated control scheme is presented in this paper. On this basis, the disturbance observer is designed and verified by simulation, and the expected results are obtained.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫怡寧;;淺談人工智能與機(jī)器人的發(fā)展趨勢(shì)[J];電子測(cè)試;2016年23期
2 符曉玲;劉旭東;;基于自適應(yīng)反步法和端口受控哈密頓理論的永磁同步電機(jī)控制[J];電機(jī)與控制應(yīng)用;2016年10期
3 劉應(yīng)新;于海生;;機(jī)器人的端口受控哈密頓與自適應(yīng)混合控制[J];青島大學(xué)學(xué)報(bào)(工程技術(shù)版);2016年03期
4 譚傳接;楊向宇;趙世偉;;基于無(wú)源性的無(wú)刷直流電動(dòng)機(jī)速度控制[J];微特電機(jī);2016年08期
5 解洪超;于海生;;永磁同步電動(dòng)機(jī)的哈密頓控制與DSP實(shí)現(xiàn)[J];微特電機(jī);2016年05期
6 于瀟雁;陳力;;漂浮基柔性兩桿空間機(jī)械臂基于狀態(tài)觀測(cè)器的魯棒控制及振動(dòng)控制[J];機(jī)械工程學(xué)報(bào);2016年15期
7 王艷;于海生;于金鵬;;永磁同步電機(jī)速度的滑模與哈密頓協(xié)調(diào)控制研究[J];青島大學(xué)學(xué)報(bào)(工程技術(shù)版);2016年01期
8 黃肇;羅隆福;王曉芳;;永磁同步電機(jī)的端口受控哈密頓控制[J];電源技術(shù);2016年03期
9 吳忠強(qiáng);吳昌韓;賈文靜;趙立儒;;基于能量函數(shù)的永磁同步電機(jī)無(wú)速度傳感器H_∞控制[J];中國(guó)機(jī)械工程;2016年05期
10 ;2016年,五大機(jī)器人的發(fā)展趨勢(shì)[J];機(jī)床與液壓;2016年02期
相關(guān)博士學(xué)位論文 前1條
1 于海生;交流電機(jī)的能量成型與非線性控制研究[D];山東大學(xué);2006年
相關(guān)碩士學(xué)位論文 前3條
1 彭詩(shī)友;幾類時(shí)變時(shí)滯神經(jīng)網(wǎng)絡(luò)的無(wú)源性分析[D];廣東工業(yè)大學(xué);2016年
2 王國(guó)安;機(jī)器人PID控制技術(shù)的研究[D];東北大學(xué);2008年
3 潘劍;基于滑模變結(jié)構(gòu)控制的永磁同步電機(jī)伺服系統(tǒng)[D];浙江大學(xué);2008年
,本文編號(hào):1532560
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1532560.html