天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于深度信念網(wǎng)絡(luò)的醫(yī)院門診量預(yù)測(cè)

發(fā)布時(shí)間:2018-02-13 21:53

  本文關(guān)鍵詞: 深度信念網(wǎng)絡(luò) 門診量預(yù)測(cè) 數(shù)據(jù)特征 邏輯回歸 出處:《計(jì)算機(jī)科學(xué)》2016年S2期  論文類型:期刊論文


【摘要】:有效的醫(yī)院門診量預(yù)測(cè)是現(xiàn)代醫(yī)院對(duì)醫(yī)療資源實(shí)現(xiàn)智能化管理的重要前提之一。現(xiàn)有的醫(yī)院門診量預(yù)測(cè)方法大多針對(duì)的是單一的數(shù)據(jù)集,缺少對(duì)數(shù)據(jù)的充分挖掘和深入分析。為此,提出一種基于深度信念網(wǎng)絡(luò)的醫(yī)院門診量預(yù)測(cè)方法,用深度信念網(wǎng)絡(luò)對(duì)醫(yī)院各科室的門診量數(shù)據(jù)進(jìn)行無(wú)監(jiān)督學(xué)習(xí),完成對(duì)門診量數(shù)據(jù)的特征提取,挖掘各科室門診量數(shù)據(jù)間的相互關(guān)系,在網(wǎng)絡(luò)的頂層疊加一個(gè)邏輯回歸層并將提取出的數(shù)據(jù)特征作為輸入來(lái)預(yù)測(cè)各科室未來(lái)的門診量。仿真實(shí)驗(yàn)結(jié)果表明,基于深度學(xué)習(xí)的預(yù)測(cè)模型可以得到較高的門診量預(yù)測(cè)精度,是一種可行且有效的預(yù)測(cè)方法。
[Abstract]:Effective outpatient volume prediction is one of the important premises for modern hospital to realize intelligent management of medical resources. Most of the existing methods of outpatient volume prediction are aimed at a single data set. For this reason, a method of outpatient quantity prediction based on deep belief network is proposed, which can be used to study the outpatient data of each department without supervision. Complete the feature extraction of the outpatient data, mining the relationship between the outpatient data of each department, A logical regression layer is superimposed on the top of the network, and the extracted data feature is used as input to predict the future outpatient volume of each department. The simulation results show that the prediction model based on in-depth learning can obtain higher prediction accuracy of outpatient volume. It is a feasible and effective prediction method.
【作者單位】: 浙江工業(yè)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61374152)資助
【分類號(hào)】:R197.3;TP183
,

本文編號(hào):1509183

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/1509183.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶33a65***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com