天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

求解非線性方程組的迭代方法的探究

發(fā)布時間:2017-08-02 04:02

  本文關(guān)鍵詞:求解非線性方程組的迭代方法的探究


  更多相關(guān)文章: 非線性方程組 牛頓迭代法 Chebyshev迭代法 效率指數(shù) 求積公式 收斂階


【摘要】:非線性方程組求解問題是計算數(shù)學中的一個重要研究領(lǐng)域。隨著科學技術(shù)的日益發(fā)展,求解非線性方程組的迭代方法也不斷更新,各種高階、高效的方法不斷被提出。本文主要介紹三種求解非線性方程組的迭代方法:1.在Newton迭代法和Chebyshev迭代法基礎(chǔ)上提出了一種新的迭代方法,從理論上證明了該方法有較高的收斂階,并給出了四個實例,將本文的方法與現(xiàn)存的幾種迭代方法進行了比較。實驗表明,我們的方法有明顯的優(yōu)勢。2.通過改進Sharma和Gupta等人提出的迭代方法得到了一種新的迭代方法,從理論上證明了該方法具有五階收斂性。利用數(shù)值實例,將我們的方法與現(xiàn)存的幾種迭代方法進行了比較。實驗結(jié)果表明,當n≥2時,無論是在收斂速度方面,還是在效率指數(shù)方面,我們的方法都有明顯的優(yōu)勢。3.提出了一種新的解非線性方程組的迭代方法,并在理論上證明了它的可行性。在數(shù)值實例部分,將我們的方法與Newton迭代法,Cordero等人提出的四階迭代法和五階迭代法進行了比較。實驗結(jié)果表明,我們的方法有明顯的優(yōu)勢。就效率指數(shù)而言,當n≥2時,我們提出的方法效率高于其他三種方法。
【關(guān)鍵詞】:非線性方程組 牛頓迭代法 Chebyshev迭代法 效率指數(shù) 求積公式 收斂階
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:O241.7
【目錄】:
  • 致謝7-8
  • 摘要8-9
  • ABSTRACT9-14
  • 第一章 緒論14-23
  • 1.1 引言14-15
  • 1.2 求解非線性方程組的迭代算法的發(fā)展史15
  • 1.3 常見迭代法15-18
  • 1.3.1 Newton迭代法(最經(jīng)典的二階迭代算法)15-16
  • 1.3.2 三種Newton法的變形16-17
  • 1.3.3 Chebyshev迭代法(常見的三階迭代法)17-18
  • 1.4 本文主要工作18
  • 1.5 預(yù)備知識18-23
  • 第二章 一種基于Chebyshev迭代解非線性方程組的方法23-32
  • 2.1 引言23-24
  • 2.1.1 Newton迭代法23
  • 2.1.2 Chebyshev迭代法23-24
  • 2.2 迭代方法24
  • 2.3 收斂分析24-26
  • 2.4 特例26
  • 2.5 數(shù)值實例26-31
  • 2.6 總結(jié)31-32
  • 第三章 求解非線性方程組的五階迭代算法32-40
  • 3.1 引言32
  • 3.2 迭代方法及收斂分析32-35
  • 3.3 效率指數(shù)35-37
  • 3.4 數(shù)值實例37-40
  • 第四章 求解非線性方程組的兩步迭代法40-46
  • 4.1 引言40
  • 4.2 迭代方法及收斂分析40-42
  • 4.3 特例42
  • 4.4 數(shù)值實例42-43
  • 4.5 效率指數(shù)43-46
  • 第五章 總結(jié)與展望46-47
  • 5.1 本文總結(jié)46
  • 5.2 研究展望46-47
  • 參考文獻47-50
  • 攻讀碩士學位期間的學術(shù)活動及成果情況50

【相似文獻】

中國期刊全文數(shù)據(jù)庫 前10條

1 歐陽艾嘉;劉利斌;賀明華;周旭;李肯立;;求解非線性方程組的混合人口遷移算法[J];計算機工程與應(yīng)用;2012年25期

2 陶會;曾德強;覃燕梅;;求解非線性方程組的一種新的數(shù)值方法[J];內(nèi)江師范學院學報;2012年10期

3 胡錫恒;一類含幅、相等式的非線性方程組的線性化及其應(yīng)用[J];應(yīng)用數(shù)學和力學;1982年04期

4 谷同祥,王能超;松弛型并行多分裂方法解非線性方程組的安全界[J];應(yīng)用數(shù)學;1995年03期

5 趙華敏,陳開周;解多元非線性方程組的一個非線性迭代法[J];西安公路交通大學學報;2001年02期

6 劉健,袁建平;一種求解非線性方程組的混沌算法[J];哈爾濱商業(yè)大學學報(自然科學版);2001年01期

7 黃書盛;遺傳算法用于求解非線性方程組[J];漳州職業(yè)技術(shù)學院學報;2005年02期

8 彭靈翔;李于鋒;;用實數(shù)編碼遺傳算法解非線性方程組[J];延安大學學報(自然科學版);2007年02期

9 張建文;丁霞霞;鄒杰濤;;一類耦合非線性方程組的整體解[J];數(shù)學的實踐與認識;2011年13期

10 朱鐵鋒;;求解非線性方程組的一種新方法及應(yīng)用[J];齊齊哈爾大學學報(自然科學版);2012年01期

中國重要會議論文全文數(shù)據(jù)庫 前5條

1 楊本立;;非線性方程組行處理法[A];數(shù)學·物理·力學·高新技術(shù)研究進展(一九九六·第六期)——中國數(shù)學力學物理學高新技術(shù)交叉研究會第6屆學術(shù)研討會論文集[C];1996年

2 董曉亮;李郴良;唐清干;;解非線性方程組的一類偏序區(qū)間快速松弛迭代算法[A];第八屆中國青年運籌信息管理學者大會論文集[C];2006年

3 邱寬;;爬山遺傳算法在非線性方程組中求解的應(yīng)用[A];2010通信理論與技術(shù)新發(fā)展——第十五屆全國青年通信學術(shù)會議論文集(下冊)[C];2010年

4 王冬冬;李哲;梁麗;周永權(quán);;基于改進人工魚群算法求解多元非線性方程組[A];2009年中國智能自動化會議論文集(第一分冊)[C];2009年

5 韓正之;林家駿;;用神經(jīng)網(wǎng)絡(luò)求解非線性相容方程[A];1993年控制理論及其應(yīng)用年會論文集[C];1993年

中國博士學位論文全文數(shù)據(jù)庫 前3條

1 王鵬;解線性約束非線性方程組的無導數(shù)方法及其理論分析[D];上海師范大學;2015年

2 葛仁東;關(guān)于奇異的非線性方程組與奇異的非線性最優(yōu)化方法的研究[D];大連理工大學;2004年

3 劉浩;大規(guī)模非線性方程組和無約束優(yōu)化方法研究[D];南京航空航天大學;2008年

中國碩士學位論文全文數(shù)據(jù)庫 前10條

1 關(guān)洪波;求解凸約束單調(diào)的非線性方程組的兩種算法[D];湖南大學;2011年

2 郭維;解非線性方程組的整體減幅法[D];湖南師范大學;2015年

3 邱明倫;求解非線性方程組的方法研究[D];西南石油大學;2012年

4 代璐璐;非線性方程組的迭代解法[D];合肥工業(yè)大學;2012年

5 曾金龍;非線性方程組的修正Levenberg-Marquardt方法[D];上海交通大學;2013年

6 秦小軍;非線性方程組的加速迭代解法[D];上海交通大學;2010年

7 陳飛;大規(guī)模非線性方程組的幾類算法研究[D];中國礦業(yè)大學;2014年

8 陳新龍;約束單調(diào)非線性方程組和奇異凸優(yōu)化問題的牛頓型算法研究[D];長沙理工大學;2013年

9 閆建瑞;求解非線性方程組迭代算法的若干研究[D];福建師范大學;2015年

10 晁玉翠;求解非線性方程組的修正牛頓法研究[D];哈爾濱工業(yè)大學;2007年

,

本文編號:607491

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/607491.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a3c8e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com