基于新擬牛頓方程改進的一類BFGS算法及其收斂性分析
發(fā)布時間:2019-01-14 10:11
【摘要】:以最小的付出獲得最大的收益,這是研究任何事或者對某些事做決策時所追求的目標,而數學理論的研究往往都是將問題在合理的假設下建立相應的數學模型,將之轉化為無約束最優(yōu)化問題的求解。經過幾十年的理論發(fā)展研究,解決這類問題最有效的方法就是擬牛頓法中的BFGS算法,本文在眾多學者研究成果的基礎上對該算法進行了改進,并取得較好的收斂速度與數值效果,具體研究內容如下:首先,在Biggs和Yuan所提kB校正公式的基礎上,引入參數??[0,1]將兩者相結合,提出一個改進的kB校正公式,當參數取兩端點時退化為兩位學者所提公式,并根據文獻思路對本文所提校正公式做進一步必要說明以確保合理性,并根據改進公式給出改進的BFGS算法(MBFGS)。其次,將本文所提的kB校正公式與新擬牛頓方程相結合,提出一個基于新擬牛頓方程改進的BFGS算法(RMBFGS),并給出算法的收斂性證明,包括全局收斂性和局部超線性收斂性,同時進行數值實驗證明算法要優(yōu)于標準BFGS算法和同等改進的BFGS算法。最后,考慮到數據維度有不斷增大的趨勢,本文參照標準L-BFGS算法的思路,將MBFGS算法做進一步擴展,推導出適用于求解大規(guī)模無約束最優(yōu)化問題的改進的L-BFGS算法(L-RMBFGS)。
[Abstract]:The goal of studying anything or making decisions about something is to get the most out of it with the least effort, and the study of mathematical theory is often to build a mathematical model of the problem under reasonable assumptions. It is transformed into an unconstrained optimization problem. After decades of theoretical development and research, the most effective method to solve this kind of problems is the BFGS algorithm in the quasi-Newton method. This paper improves the algorithm on the basis of many scholars' research results. A better convergence rate and numerical effect are obtained. The specific research contents are as follows: firstly, based on the kB correction formula proposed by Biggs and Yuan, an improved kB correction formula is proposed by combining the two parameters. When the parameters are taken at both ends, the formula is reduced to that proposed by two scholars, and the correction formula proposed in this paper is further explained according to the literature ideas to ensure the rationality, and the improved BFGS algorithm (MBFGS). Is given according to the improved formula. Secondly, combining the kB correction formula proposed in this paper with the new quasi-Newton equation, an improved BFGS algorithm (RMBFGS), based on the new quasi-Newton equation is proposed and the convergence proof of the algorithm is given, including global convergence and local superlinear convergence. At the same time, numerical experiments show that the algorithm is superior to the standard BFGS algorithm and the same improved BFGS algorithm. Finally, considering the increasing trend of data dimension, this paper makes further expansion of MBFGS algorithm according to the idea of standard L-BFGS algorithm. An improved L-BFGS algorithm (L-RMBFGS) for solving large scale unconstrained optimization problems is derived.
【學位授予單位】:西安建筑科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O224
本文編號:2408599
[Abstract]:The goal of studying anything or making decisions about something is to get the most out of it with the least effort, and the study of mathematical theory is often to build a mathematical model of the problem under reasonable assumptions. It is transformed into an unconstrained optimization problem. After decades of theoretical development and research, the most effective method to solve this kind of problems is the BFGS algorithm in the quasi-Newton method. This paper improves the algorithm on the basis of many scholars' research results. A better convergence rate and numerical effect are obtained. The specific research contents are as follows: firstly, based on the kB correction formula proposed by Biggs and Yuan, an improved kB correction formula is proposed by combining the two parameters. When the parameters are taken at both ends, the formula is reduced to that proposed by two scholars, and the correction formula proposed in this paper is further explained according to the literature ideas to ensure the rationality, and the improved BFGS algorithm (MBFGS). Is given according to the improved formula. Secondly, combining the kB correction formula proposed in this paper with the new quasi-Newton equation, an improved BFGS algorithm (RMBFGS), based on the new quasi-Newton equation is proposed and the convergence proof of the algorithm is given, including global convergence and local superlinear convergence. At the same time, numerical experiments show that the algorithm is superior to the standard BFGS algorithm and the same improved BFGS algorithm. Finally, considering the increasing trend of data dimension, this paper makes further expansion of MBFGS algorithm according to the idea of standard L-BFGS algorithm. An improved L-BFGS algorithm (L-RMBFGS) for solving large scale unconstrained optimization problems is derived.
【學位授予單位】:西安建筑科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O224
【參考文獻】
相關期刊論文 前10條
1 鄭婷;李宗學;;一類新擬牛頓算法的超線性收斂性[J];內蒙古大學學報(自然科學版);2016年03期
2 牛瀟萌;;非線性互補問題光滑化擬牛頓算法的收斂性分析[J];數學的實踐與認識;2016年06期
3 蔣小波;梁久禎;;基于BFGS計算力場的GVF Snake模型及其應用實現[J];計算機系統應用;2015年11期
4 柳力;;利用分解校正矩陣確定搜索方向的BFGS算法[J];數學雜志;2016年05期
5 景書杰;于俊霞;;一個新的BFGS信賴域算法[J];數學雜志;2015年01期
6 胡平;鞠捷;;基于BFGS算法的井下人員三維定位方法的研究[J];計算機應用與軟件;2014年07期
7 王希云;鮑瑩瑩;;無約束優(yōu)化問題的對角二階擬柯西法[J];應用數學;2014年01期
8 楚添定;馬柏林;;基于新的擬牛頓方程的Broyden-Fletcher-Goldfarb-Shanno算法[J];應用數學與計算數學學報;2012年04期
9 景書杰;李少娟;;一個改進的BFGS信賴域算法及收斂性分析[J];河南理工大學學報(自然科學版);2012年01期
10 楊潔;焦寶聰;;一類新擬牛頓非單調信賴域算法[J];數學的實踐與認識;2011年22期
相關碩士學位論文 前2條
1 陳奎林;一類改進的BFGS算法及其收斂性分析[D];重慶大學;2012年
2 李廷鋒;求解大規(guī)模無約束優(yōu)化問題的修正L-BFGS方法[D];河南大學;2008年
,本文編號:2408599
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2408599.html